UVA 12298 (FFT)

题意:给定一个区间[a,b],给定四种花色的纸牌,每张牌上都有一个合数.对于每一个n属于[a,b]四种牌中各取一张和等于n的方案数.然后限制条件是有几种牌遗失了.

裸的fft,找出所有的合数记录下来然后去掉遗失的,对每个花色FFT,然后四个花色的点表达式相乘求出IDFT就是方案数了~

坑点:所有的都要换成long double!!!

#include <cstring>
#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
const long double pi = acos (-1);
#define maxn 1<<19

struct plex {
    long double x, y;
    plex (long double _x = 0.0, long double _y = 0.0) : x (_x), y (_y) {}
    plex operator + (const plex &a) const {
        return plex (x+a.x, y+a.y);
    }
    plex operator - (const plex &a) const {
        return plex (x-a.x, y-a.y);
    }
    plex operator * (const plex &a) const {
        return plex (x*a.x-y*a.y, x*a.y+y*a.x);
    }
};

int rev(int id, int len)
{
    int ret = 0;
    for(int i = 0; (1 << i) < len; i++)
    {
        ret <<= 1;
        if(id & (1 << i)) ret |= 1;
    }
    return ret;
}

plex A[1 << 19];
void FFT(plex *a, int len, int DFT)
{
    for(int i = 0; i < len; i++)
        A[rev(i, len)] = a[i];
    for(int s = 1; (1 << s) <= len; s++)
    {
        int m = (1 << s);
        plex wm = plex(cos(DFT*2*pi/m), sin(DFT*2*pi/m));
        for(int k = 0; k < len; k += m)
        {
            plex w = plex(1, 0);
            for(int j = 0; j < (m >> 1); j++)
            {
                plex t = w*A[k + j + (m >> 1)];
                plex u = A[k + j];
                A[k + j] = u + t;
                A[k + j + (m >> 1)] = u - t;
                w = w*wm;
            }
        }
    }
    if(DFT == -1) for(int i = 0; i < len; i++) A[i].x /= len, A[i].y /= len;
    for(int i = 0; i < len; i++) a[i] = A[i];
    return;
}

char op[11111][11];
bool is_prime[51111];
int a, b, c, d;
plex S[maxn], H[maxn], D[maxn], C[maxn];

void init () {
    memset (is_prime, 0, sizeof is_prime);
    for (int i = 2; i <= 50000; i++) {
        if (!is_prime[i]) {
            for (int j = i+i; j <= 50000; j += i)
                is_prime[j] = 1;
        }
    }
}

int main () {
    //freopen ("in.txt", "r", stdin);
    init ();
    while (scanf("%d %d %d", &a, &b, &c), a || b || c) {
        int len = 1;
        while(len <= b) len <<= 1;
        len <<= 3;
        for(int i = 0; i <= b; i++)
            if(is_prime[i]) {
                S[i] = H[i] = C[i] = D[i] = plex(1, 0);
            }
            else S[i] = H[i] = C[i] = D[i] = plex(0, 0);
        for(int i = b + 1; i < len; i++) S[i] = H[i] = C[i] = D[i] = plex(0, 0);
        int num;
        char type;
        for(int i = 0; i < c; i++)
        {
            scanf("%d%c", &num, &type);
            switch(type)
            {
                case 'S': S[num] = plex(0, 0); break;
                case 'H': H[num] = plex(0, 0); break;
                case 'C': C[num] = plex(0, 0); break;
                case 'D': D[num] = plex(0, 0); break;
            }
        }
        FFT (S, len, 1); FFT(H, len, 1); FFT(C, len, 1); FFT(D, len, 1);
        for (int i = 0; i < len; i++)
            S[i] = S[i]*H[i]*C[i]*D[i];
        FFT (S, len, -1);
        for(int i = a; i <= b; i++)
            printf("%lld\n", (long long)(S[i].x + 0.5));
        putchar('\n');
    }
    return 0;
}


你可能感兴趣的:(UVA 12298 (FFT))