用于求解同余方程组
x = ri (mod ai) 1<=i<=n
更一般的,我们来考虑如何解决ai不互质的情况
我们可以用合并方程组的方法来解决此类问题。
x = r1 (mod a1)
x = r2 (mod a2)
我们可以将上述方程写成另一种形式
x = k1*a1+r1
x = k2*a2+r2
我们可以得到
k1*a1+r1=k2*a2+r2
即
k1*a1 = r2-r1 (mod a2)
用扩展欧几里得可以求出k1
(程序中先默认求出k1*a1 = gcd(a1,a2)(mod a2) 的解,再求出k1 = k1'*( (r2-r1)/gcd ),过去这地方一直没看懂,擦擦擦 )
那么我么可以得到 x,方程组可以被合并成
x = (k1*a1+r1) (mod a1*a2/gcd )
不断合并即可求解
献上入门题
hdu3579
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; int Case,n; LL m1,r1,m2,r2,x,y; LL m[100],r[100]; LL exgcd(LL a,LL b){ if (b==0){ x = 1; y = 0; return a; } LL ret = exgcd(b,a%b); LL tmp = x; x = y; y = tmp-(a/b)*y; return ret; } int main(){ scanf("%d",&Case); for (int T=1;T<=Case;T++){ scanf("%d",&n); for (int i=1;i<=n;i++) scanf("%I64d",&m[i]); for (int i=1;i<=n;i++) scanf("%I64d",&r[i]); m1 = m[1]; r1 = r[1]; bool flag = 0; for (int i=2;i<=n;i++){ m2 = m[i]; r2 = r[i]; int d = exgcd(m1,m2); int c = r2-r1; if (c%d){ flag = 1; break; } int t = m2/d; x = (x*(c/d)%t+t)%t; r1 = x*m1+r1; m1 = m1*m2/d; } if (flag) {printf("Case %d: -1\n",T);continue;} if (r1<=0) r1+=m1; printf("Case %d: %I64d\n",T,r1); } return 0; }
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; int n; LL x,y,m1,m2,r1,r2; LL exgcd(LL a,LL b){ if (b==0){ x = 1; y = 0; return a; } LL ret = exgcd(b,a%b); LL tmp = x; x = y; y = tmp-(a/b)*y; return ret; } int main(){ while (~scanf("%d",&n)){ scanf("%lld%lld",&m1,&r1); bool flag = 0; for (int i=1;i<n;i++){ scanf("%lld%lld",&m2,&r2); if (flag) continue; LL d = exgcd(m1,m2); LL c = r2-r1; if (c%d) {flag=1;continue;} LL t = m2/d; x = (x*(c/d)%t+t)%t; r1 = m1*x+r1; m1 = m1*m2/d; } if (flag) puts("-1"); else printf("%lld\n",r1); } return 0; }