nyist 132Prime Ring Problem

rime Ring Problem

A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.

nyist 132Prime Ring Problem_第1张图片

输入

n (0 < n < 20).

输出

The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.

You are to write a program that completes above process.

Print a blank line after each case.

样例输入

6
8

样例输出

Case 1:
1 4 3 2 5 6
1 6 5 2 3 4

Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2

AC代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int prime[40]={0};
int dir[21],ring[21];
void pri()
{
    int i,j;
    prime[0]=prime[1]=1;
    for(i=2;i<=6;++i)
    for(j=i*i;j<40;j+=i)
        prime[j]=1;
}
int DFS(int x,int y)
{
    int i;
    if(x==y+1&&prime[ring[y]+ring[1]]==0)
    {
        printf("1 ");
        for(i=2;i<y;++i)
            printf("%d ",ring[i]);
        printf("%d\n",ring[y]);
        return 0;
    }
    for(i=2;i<=y;++i)
    {
        if(!dir[i]&&!prime[i+ring[x-1]])
        {
            dir[i]=1;
            ring[x]=i;
            DFS(x+1,y);
            dir[i]=0;
        }
    }
}

int main()
{
    int T=1,n;
    pri();
    while(~scanf("%d",&n))
    {
        printf("Case %d:\n",T++);
        if(n==1)printf("1\n");
        else if(n&1)continue;
        else {
        	memset(dir,0,sizeof(dir));
        	dir[1]=ring[1]=1;
        	DFS(2,n);
		}
		printf("\n");
    }
    return 0;
}



你可能感兴趣的:(nyist 132Prime Ring Problem)