Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Given nums = [1,3,-1,-3,5,3,6,7]
, and k = 3.
Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as [3,3,5,5,6,7]
.
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
Follow up:
Could you solve it in linear time?
Hint:
class Solution { public: vector<int> maxSlidingWindow(vector<int>& nums, int k) { vector<int> result; deque<int> buf; for (int i = 0; i < nums.size(); i++) { if (!buf.empty() && buf.front() <= i-k) { buf.pop_front(); } while (!buf.empty() && nums[buf.back()] <= nums[i]) { buf.pop_back(); } buf.push_back(i); if (i >= k-1) { result.push_back(nums[buf.front()]); } } return result; } };