- CycleGAN学习:Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, 2017.
屎山搬运工
深度学习CycleGANGAN风格迁移
【导读】图像到图像的转换技术一般需要大量的成对数据,然而要收集这些数据异常耗时耗力。因此本文主要介绍了无需成对示例便能实现图像转换的CycleGAN图像转换技术。文章分为五部分,分别概述了:图像转换的问题;CycleGAN的非成对图像转换原理;CycleGAN的架构模型;CycleGAN的应用以及注意事项。图像到图像的转换涉及到生成给定图像的新的合成版本,并进行特定的修改,例如将夏季景观转换为冬季
- go-etcd实战
小书go
golang实战演练golangetcd服务发现服务注册微服务
etcd简介etcdisastronglyconsistent,distributedkey-valuestorethatprovidesareliablewaytostoredatathatneedstobeaccessedbyadistributedsystemorclusterofmachines.Itgracefullyhandlesleaderelectionsduringnetwork
- 错误TabError: inconsistent use of tabs and spaces in indentation
辣克糖LuckSugar
编程疑难python
错误反馈:TabError:inconsistentuseoftabsandspacesinindentationpython运行程序TabError:inconsistentuseoftabsandspacesinindentation表示Tab键和Space键混用造成的错误,要求规范为一种(单一使用tab或者单一使用space);可在编辑器中查看空格和tab键的输入;本人使用的是notepad
- 报错TabError: Inconsistent use of tabs and spaces in indentation
香博士
pythonpythonbuglinux
TabError:Inconsistentuseoftabsandspacesinindentation首先这个错误的意思是:在缩进的时候,使用了错误的空格和tab我使用的python3.6,造成这个错误的原因是我在网上复制代码后,残生了错位或者其他原因,也就是说,这种错误产生的原因正是由于空格或者tab缩进造成的。然后我做了试验,将空格删除,直接使用tab完成缩进,发现程序正常运行;再试一下空格
- TabError: Inconsistent use of tabs and spaces in indentation
台阶上的土豆
学习笔记python
TabError:Inconsistentuseoftabsandspacesinindentation首先这个错误的意思是:在缩进的时候,使用了错误的空格和tab我使用的python3.5,造成这个错误的原因是我在函数里面敲if....elif判断语句的时候,elif之前先用了空格然后再用tab完成了对齐,也就是说,这种错误产生的原因正是由于空格或者tab缩进造成的。然后我做了试验,将空格删除,
- dubbo负载均衡策略
小飞侠-2
java
负载均衡算法在集群负载均衡时,Dubbo提供了4种均衡策略,如:RandomLoadBalance(随机均衡算法)、;RoundRobinLoadBalance(权重轮循均衡算法)、LeastActionLoadBalance(最少活跃调用数均衡算法)、ConsistentHashLoadBalance(一致性Hash均衡算法)。缺省时为Random随机调用。这四种算法的原理简要介绍如下:1、Ro
- MasaCtrl:Tuning-free mutual self-attention control for consistent image synthesis and editing
Kun Li
图像视频生成大模型stablediffusion
https://github.com/TencentARC/MasaCtrl/issues/13https://github.com/TencentARC/MasaCtrl/issues/13QuestionaboutMask·Issue#31·TencentARC/MasaCtrl·GitHub
- 1-38 Consistent Noun Stress in Changing Verb Tenses
柚子葉
Whenyoudotheexercisethefirsttime,gothroughstressingonlythenounsDogseatbones.Practicethisuntilyouarequitecomfortablewiththeintonation.Thepronunciationandwordconnectionsareontheright,andthefullverbtense
- go的fasthttp学习
~kiss~
计算机网络golang学习开发语言
背景介绍fasthttpwasdesignedforsomehighperformanceedgecases.Unlessyourserver/clientneedstohandlethousandsofsmalltomediumrequestspersecondandneedsaconsistentlowmillisecondresponsetimefasthttpmightnotbeforyo
- 深入理解nginx一致性哈希负载均衡模块[下]
码农心语
nginx学习LINUXc++开发nginx哈希算法负载均衡upstream一致性哈希
上接深入理解nginx一致性哈希负载均衡模块[上]3.源码分析 nginx的一致性哈希功能是通过ngx_http_upstream_hash_module来提供的,下面来整体通过ngx_http_upstream_hash_module来学习一下一致性哈希算法的实现原理。3.1配置指令分析 要启用Nginx的一致性哈希负载均衡算法,你需要使用ngx_http_upstream_hash_mod
- MySQL表锁与行锁
信缘 ꈍ 随缘
mysql数据库java
//MyISAM查看表的情况:showopentables;加锁:locktable表名read(write),表二read(write);释放锁:unlocktables;分析表锁定:showstatuslike'table%';//innoDB事务四个特性:ACID(Atomicity:原子性、Consistent:一致性、Isolation:隔离性、Durable:持久性)并发事务处理带来的
- ProCAST 2016 warning-8 = invalid inconsistent license key
dgdqqxxx
经验分享经验分享
文章目录前言一、原因二、解决方法总结前言安装ProCAST2016完成后运行时报错“LicenseManagerError(-8),warning-8=invalidinconsistentlicensekey”一、原因导致这个问题的原因可能每个人的不一样,我的是因为安装目录问题:默认的安装目录Visual-Environment在C:\ProgramFiles文件夹下,而其他ProCAST、Qu
- 论文阅读-基于动态权重的一致性哈希微服务负载均衡优化
向来痴_
负载均衡论文论文阅读微服务负载均衡
论文名称:基于动态权重的一致性哈希微服务负载均衡优化摘要随着互联网技术的发展,互联网服务器集群的负载能力正面临前所未有的挑战。在这样的背景下,实现合理的负载均衡策略变得尤为重要。为了达到最佳的效率,可以利用一致性哈希算法对集群负载均衡系统进行负载分配。针对微服务架构的服务器集群场景,本文分析了集群负载均衡的特性,并提出了一种基于虚拟节点的一致性哈希环设计与分割方法,以及基于动态权值的分配策略。在一
- 快速计算距离Annoy算法原理及Python使用
召唤师的峡谷
机器学习算法
快速计算距离Annoy算法基本原理高维稀疏数据进行快速相似查找,可以采用learningtohash参考:Minhashing&LSH&Simhash技术汇总,但高维稠密数据查找则采用annoy如何从海量文本中快速查找出相似的TopN文本Annoy(ApproximateNearestNeighborsOhYeah)快速算法,在实际应用中发现无论计算速度和准确性都非常不错。原始2D数据分布图:1.
- Streamline Complex Decision Making with AI
SEO-狼术
DelphinetCrack开发语言
StreamlineComplexDecisionMakingwithAILogicGemhelpsdevelopersandanalyststocollaborateoncraftingclear,consistentbusinessrulesusingdecisiontablemethodology.LogicGemisaWindowsapplicationdesignedtoempowerb
- Efficient Token-Guided Image-Text Retrieval withConsistent Multimodal Contrastive Training
ALGORITHM LOL
人工智能算法深度学习
paper:https://arxiv.org/pdf/2306.08789.pdfcode:https://github.com/LCFractal/TGDT1.论文核心思想整合了粗粒度与细粒度检索,利用了二者的优点新的训练目标:ConsistentMultimodalContrastive(CMC)loss,确保模态内和模态间语义一致性基于混合全局和局部的跨模态相似性两阶段推理方法效果:检索精
- 2020-04-18
汪乔桉
HashMap底层实现原理及面试问题①HashMap的工作原理HashMap基于hashing原理,我们通过put()和get()方法储存和获取对象。当我们将键值对传递给put()方法时,它调用键对象的hashCode()方法来计算hashcode,让后找到bucket位置来储存值对象。当获取对象时,通过键对象的equals()方法找到正确的键值对,然后返回值对象。HashMap使用链表来解决碰撞
- sklearn:机器学习 分类特征编码category_encoders
Cachel wood
python机器学习和数据挖掘分类数据挖掘人工智能pythonpandassklearn机器学习
文章目录category_encoders简介OrdinalEncoder序列编码OneHotEncoder独热编码TargetEncoder目标编码BinaryEncoder二进制编码BaseNEncoder贝叶斯编码LeaveOneOutEncoder留一法HashingEncoder哈希编码CatBoostEncodercatboost目标编码CountEncoder频率编码WOEEncod
- Redis详解(六)渐进式rehash机制
fedorafrog
#NoSQL
在Redis中,键值对(Key-ValuePair)存储方式是由字典(Dict)保存的,而字典底层是通过哈希表来实现的。通过哈希表中的节点保存字典中的键值对。我们知道当HashMap中由于Hash冲突(负载因子)超过某个阈值时,出于链表性能的考虑,会进行Resize的操作。Redis也一样。在redis的具体实现中,使用了一种叫做渐进式哈希(rehashing)的机制来提高字典的缩放效率,避免re
- # MySQL-事务介绍
翰林小院
---[TOC]---#MySQL事务##ACID1.**原子性(Atomcity)**一个事务的最小单元,要么全部成功要么全部失败,执行的过程中是不能被打断或者执行其他操作的。2.**一致性(Consistent)**事务开始前和结束后,数据库的完整性约束没有被破坏。比如A向B转账,不可能A扣了钱,B却没收到,事务开始前A+B=500,事务结束后A+B不可能!=500。3.**隔离性(Isola
- sklearn.preprocessing 特征编码汇总
Cachel wood
python机器学习和数据挖掘sklearn人工智能pythonpandasydata机器学习
文章目录常见特征种类one-hot编码特征哈希(`Featurehashing`)基于统计的类别编码对循环特征的编码目标编码(Targetencoding)K折目标编码(K-FoldTargetencoding)用于数据分析的特征可能有多种形式,需要将其合理转化成模型能够处理的形式,特别是对非数值的特征,特征编码就是在做这样的工作。常见特征种类二值数据:只有两种取值的变量(不一定是0/1,但是可以
- Redis(九)集群(cluster)
Lucky_Turtle
Javaredis数据库缓存
文章目录概述作用1.redis集群的槽位slot2.redis集群的分片3.第1,2点的优势:**最大优势,方便扩缩容和数据分派查找**4.slot槽位映射,一般业界有3种解决方案第一种:哈希取余分区第二种:一致性哈希算法分区第三种:哈希槽分区为什么redis集群的最大槽数是16384个?注意点案例1、配置2、集群读写3、主从容错迁移4、主从扩容5、主从缩容集群常用命令和CRC16命令不在同一个s
- 【推荐系统】DSSM双塔召回
sdbhewfoqi
推荐系统机器学习深度学习数据挖掘
召回综述:【推荐系统】推荐系统主流召回方法综述目录一、DSSM概念二、实践召回模型负例如何选择?是否做Norm?(应用trick)温度超参是什么?-->Loss要带温度超参2.1.美图架构图2.2.淘系架构图优化版本2.3.全民k歌架构图优化方法一、DSSM概念在推荐中的应用1、输入层wordhashing2、中间层(常用的DNN模型)3、匹配层将doc和query(item和user)的embe
- [转载]一个速度快内存占用小的一致性哈希算法
gensmusic
转载自:http://colobu.com/2016/03/22/jump-consistent-hash/一个速度快内存占用小的一致性哈希算法JumpConsistentHash一致性哈希最早由MIT的Karger提出,在发表于1997年的论文ConsistentHashingandRandomTrees:DistributedCachingProtocolsforRelievingHotSpo
- 【SparkML实践7】特征选择器FeatureSelector
周润发的弟弟
Spark机器学习spark-ml
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。FeatureSelectorsVectorSlicerVe
- 论文阅读-在分布式数据库环境中对哈希算法进行负载均衡基准测试
向来痴_
分布式数据库负载均衡论文阅读
论文名称:BenchmarkingHashingAlgorithmsforLoadBalancinginaDistributedDatabaseEnvironment摘要现代高负载应用使用多个数据库实例存储数据。这样的架构需要数据一致性,并且确保数据在节点之间均匀分布很重要。负载均衡被用来实现这些目标。几乎所有负载均衡系统的核心都是哈希算法。自经典一致性哈希引入以来,已经为此目的设计了许多算法。负
- 商务英语:外企中常用的on the same page是什么意思?
AmyTrilinguist
onthesamepage我们在这个项目上应该保持一致性WeshouldbeconsistentonthisprojectWeshouldbeonthesamepageonthisproject.onthesamepage:一致性(暗指信息一致、态度一直、想法一致)Iwouldhopethatwewouldbeonthesamepage我希望我们会保持一致Thereasonwelaunchthis
- Predict Consistently Depth From Input Video Frames
m_buddy
#DepthEstimation3d计算机视觉深度学习
1.概述前言:如今CV在2D领域取得较为不错的结果,随着自动驾驶的兴起越来愈多的注意力被吸引到3D场景下的各式任务中去,其中深度估计算是一种2D到3D的转换桥梁,赋予了2D图像更多信息。在这本篇文章中将会围绕深度估计算法讨论在视频场景下的深度估计任务,并根据本人在该方向上的一些浅薄认知介绍几种适用于视频场景的连续深度估计方法,不足或不全请见谅。单帧图像场景下的深度估计与存在的问题:对于单张图像的深
- 《Robust Consistent Video Depth Estimation》论文笔记
m_buddy
#DepthEstimationvideodepth
主页与代码地址:robust_cvd1.概述导读:这篇文章的目的是为了在视频场景下生成稳定的深度估计结果,其提出的算法可以在一个单目视频中估计出一致的深度图和相机位姿。文章首先会使用MiDas为视频中的单帧图像做初始深度估计(主要用于提供深度scale参数),以及使用CeresLibrary上计算相机的初始位姿信息。之后再在输入的视频序列上使用在线finetune形式交替进行深度估计结果与相机位姿
- An End-to-End Learning-Based Metadata Management Approach for Distributed File Systems——论文阅读
妙BOOK言
论文阅读论文阅读分布式
TC2022Paper,元数据论文阅读汇总“multiplemetadataserver(MDS)”多个元数据服务器“localitypreservinghashing(LPH)”局部保持哈希“MultipleSubsetSumProblem(MSSP).”多子集和问题“polynomial-timeapproximationscheme(PTAS)”多项式时间近似方法背景分布式元数据的挑战目前的
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_