以下代码为本人编写,转载或引用请注明出处! http://blog.csdn.net/fduan
Source: University of Ulm Local Contest 1998
A boolean matrix has the parity property when each row and each column has an even sum, i.e. contains an even number of bits which are set. Here's a 4 x 4 matrix which has the parity property:
1 0 1 0
0 0 0 0
1 1 1 1
0 1 0 1
The sums of the rows are 2, 0, 4 and 2. The sums of the columns are 2, 2, 2 and 2.
Your job is to write a program that reads in a matrix and checks if it has the parity property. If not, your program should check if the parity property can be established by changing only one bit. If this is not possible either, the matrix should be classified as corrupt.
Input
The input will contain one or more test cases. The first line of each test case contains one integer n (n < 100), representing the size of the matrix. On the next n lines, there will be n integers per line. No other integers than 0 and 1 will occur in the matrix. Input will be terminated by a value of 0 for n.
Output
For each matrix in the input file, print one line. If the matrix already has the parity property, print "OK". If the parity property can be established by changing one bit, print "Change bit (i,j)" where i is the row and j the column of the bit to be changed. Otherwise, print "Corrupt".
Sample Input
4
1 0 1 0
0 0 0 0
1 1 1 1
0 1 0 1
4
1 0 1 0
0 0 1 0
1 1 1 1
0 1 0 1
4
1 0 1 0
0 1 1 0
1 1 1 1
0 1 0 1
0
Sample Output
OK
Change bit (2,3)
Corrupt
思路:此题无需记录各行与各列的和,只需采用两个布尔数组来保存各行列和是否为偶数,如果存在奇数,且奇数数目均为1,则该数组可被修正。下面给出我的实现代码,其中关键模块有两个,第一部分用于求取矩阵各行、各列元素之和,第二部分用于判断矩阵是否可被修正,以及如何修正。
模块一:求取矩阵各行、各列元素之和,并判断是否存在奇偶性
bool has_parity( int **& mat, int rows, int cols, vector<bool> & row_flags, vector<bool> & col_flags ) { bool res = true; int sum = 0; for( int i = 0; i < rows; ++i ) { for( int j = 0; j < cols; ++j ) sum += mat[i][j]; if( sum % 2 != 0 ) { row_flags[i] = false; res = false; } sum = 0; } for( int i = 0; i < cols; ++i ) { sum = 0; for( int j = 0; j < rows; ++j ) sum += mat[j][i]; if( sum % 2 != 0 ) { col_flags[i] = false; res = false; } } return res; }
模块二:判断矩阵是否可被修正
void change_bit( vector<bool> & row_flag, vector<bool> & col_flag ) { int row_num_odd = count( row_flag.begin(), row_flag.end(), false ); int col_num_odd = count( col_flag.begin(), col_flag.end(), false ); bool is_corrupt = false; if( row_num_odd != col_num_odd || ( row_num_odd > 1 )) { printf("Corrupt/n"); return; } for( size_t i = 0; i < row_flag.size(); ++i ) { for( size_t j = 0; j < col_flag.size(); ++j ) { if( ! row_flag[i] && ! col_flag[j] ) { row_flag[i] = col_flag[j] = true; printf( "Change bit (%d,%d)/n", i + 1, j + 1 ); i = row_flag.size(); break; } } } }
下面给出主调函数,实现数据读取以及函数调用。
void error_correct() { int n; int ** mat = NULL; while( cin >> n ) { if( n == 0 ) break; // memory allocation mat = new int*[n]; for( int i = 0; i < n; ++i ) mat[i] = new int[n]; // import data for( int i = 0; i < n; ++i ) for( int j = 0; j < n; ++j ) scanf( "%d", &( mat[i][j] ) );//cin >> mat[i][j]; vector<bool> row_flags( n, true ); vector<bool> col_flags( n, true ); bool is_bool_mat = has_parity( mat, n, n, row_flags, col_flags ); if( is_bool_mat ) printf("OK/n"); else change_bit( row_flags, col_flags ); while( n-- != 0 ) delete[] mat[n]; delete [] mat; mat = NULL; } }