题目大意:
给出两个很长的串(长度分别 <= 100000) 求出两个串的最长公共子串的长度
大致思路:
用后缀数组的话很明显是个水题,将两个串连起来中间用一个没有出现的值隔开然后求出后缀数组和height数组
找到sa[i]及sa[i - 1]来自不同的串的时候height数组的最大值即可
代码如下:
Result : Accepted Memory : 5512 KB Time : 375 ms
/* * Author: Gatevin * Created Time: 2015/2/2 20:59:27 * File Name: Iris_Freyja.cpp */ #include<iostream> #include<sstream> #include<fstream> #include<vector> #include<list> #include<deque> #include<queue> #include<stack> #include<map> #include<set> #include<bitset> #include<algorithm> #include<cstdio> #include<cstdlib> #include<cstring> #include<cctype> #include<cmath> #include<ctime> #include<iomanip> using namespace std; const double eps(1e-8); typedef long long lint; #define maxn 233333 /* * 只需要将两个串连接起来,中间用一个不会出现的值隔开,结尾加上0 * 求出height数组,之后只需要取当sa[i]与sa[i - 1]来自不同的两个串时 * 对应height的值的最大值即可,很简单的后缀数组的应用 */ /* * Doubling Algorithm求后缀数组 */ int wa[maxn], wb[maxn], wv[maxn], Ws[maxn]; int cmp(int* r, int a, int b, int l) { return r[a] == r[b] && r[a + l] == r[b + l]; } void da(int *r, int *sa, int n, int m) { int *x = wa, *y = wb, *t, i, j, p; for(i = 0; i < m; i++) Ws[i] = 0; for(i = 0; i < n; i++) Ws[x[i] = r[i]]++; for(i = 1; i < m; i++) Ws[i] += Ws[i - 1]; for(i = n - 1; i >= 0; i--) sa[--Ws[x[i]]] = i; for(j = 1, p = 1; p < n; j *= 2, m = p) { for(p = 0, i = n - j; i < n; i++) y[p++] = i; for(i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i] - j; for(i = 0; i < n; i++) wv[i] = x[y[i]]; for(i = 0; i < m; i++) Ws[i] = 0; for(i = 0; i < n; i++) Ws[wv[i]]++; for(i = 1; i < m; i++) Ws[i] += Ws[i - 1]; for(i = n - 1; i >= 0; i--) sa[--Ws[wv[i]]] = y[i]; for(t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++) x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++; } return; } int rank[maxn], height[maxn]; void calheight(int* r, int* sa, int n) { int i, j, k = 0; for(i = 1; i <= n; i++) rank[sa[i]] = i; for(i = 0; i < n; height[rank[i++]] = k) for(k ? k-- : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; k++); return; } char s1[maxn >> 1]; char s2[maxn >> 1]; int s[maxn]; int sa[maxn]; int main() { scanf("%s", s1); scanf("%s", s2); int n1 = strlen(s1); int n2 = strlen(s2); int n = n1 + 1 + n2; for(int i = 0; i < n1; i++) s[i] = s1[i] - 'a' + 1; s[n1] = 27; for(int i = 0; i < n2; i++) s[n1 + 1 + i] = s2[i] - 'a' + 1; s[n] = 0; da(s, sa, n + 1, 28); calheight(s, sa, n); int ans = 0; for(int i = 2; i <= n; i++) if(((lint)sa[i] - n1)*((lint)sa[i - 1] - n1) < 0)//判定两个起始位置是来自不同的串 ans = max(height[i], ans); printf("%d\n", ans); return 0; }