- 语音识别技术有哪些应用场景?
不想秃头的程序
语音识别人工智能
语音识别技术,作为人工智能领域的重要分支,已经深入到我们日常生活的方方面面。以下是一些常见的应用场景:智能助理智能助理如Siri、GoogleAssistant以及Alexa等,都基于语音识别技术来实现用户交互。用户可以通过语音命令来拨打电话、查询信息、设置提醒等。这些助理软件能够理解多种语言和方言,并能够在复杂的环境噪声中准确识别用户的指令。智能家居在智能家居领域,语音识别被用于控制各种智能设备
- 微软 Azure AI 服务免费试用及申请:语音识别、文本转语音、基于视觉、语言处理、文档分析等10大场景
全云在线allcloudonline
microsoftazure人工智能
为方便企业认识和快速上手AzureAI服务,我们总结了一套包括语音识别、文本转语音、基于视觉、语言处理场景、文档分析场景等全面的预构建模型和演示,旨在解决各种用例。这些模型易于访问,可帮助企业无缝实施AI驱动的解决方案,如下是已整理并编录的AzureAI服务中提供的预构建演示,希望这可以帮助您将AI无缝融入您的产品和服务中。微软AzureAI服务可以合规、稳定地提供企业用户使用ChatGPT的可能
- sphinx-apidoc
longgb246
[toc]一、使用sphinx-apidoc[OPTIONS]-o[EXCLUDE_PATTERN,…]sphinx-apidoc是一个自动生成Sphinx源的工具,使用该autodoc扩展。MODULE_PATH:是python的源码的文件目录。OUTPUT_PATH:是包含conf.py和*.rst的source目录。注意在python源码的py文件中,应该使用if__name__=='__m
- 基于人工智能的智能语音助手
人工智能发烧友
人工智能
语音助手的自然语言处理模块是语音助手系统的关键组成部分。通过这个模块,系统能够识别用户的意图并做出相应的回应。我们可以使用NLP技术来解析文本输入,并将其转换为系统可以理解的命令或指令。在本项目中,我们将结合语音识别、自然语言处理和语音合成技术,构建一个功能简化的语音助手。一、项目背景与需求分析1.1项目目标本项目旨在创建一个语音助手系统,它可以:1.语音识别:从用户的语音输入中提取文本信息。2.
- 【ShuQiHere】探索人工智能核心:机器学习的奥秘
ShuQiHere
人工智能机器学习
【ShuQiHere】什么是机器学习?机器学习(MachineLearning,ML)是人工智能(ArtificialIntelligence,AI)中最关键的组成部分之一。它使得计算机不仅能够处理数据,还能从数据中学习,从而做出预测和决策。无论是语音识别、自动驾驶还是推荐系统,背后都依赖于机器学习模型。机器学习与传统的编程不同,它不再依赖于人类编写的固定规则,而是通过数据自我改进模型,从而更灵活
- 机器学习,深度学习,AGI,AI的概念和区别
我就是全世界
人工智能机器学习深度学习
1.人工智能(AI)的定义与范围1.1AI的基本概念人工智能(AI)是指通过计算机系统模拟人类智能的技术和科学。AI的目标是创建能够执行通常需要人类智能的任务的系统,如视觉识别、语音识别、决策制定和语言翻译。AI的核心在于其能够处理和分析大量数据,从中提取有用的信息,并根据这些信息做出决策或预测。AI的发展可以追溯到20世纪50年代,当时科学家们开始探索如何使机器能够执行复杂的任务。随着计算能力的
- Python 实时语音识别
TEDxPY
python学习python资源语音识别Python人工智能实时语音识别百度语音API
Python实时语音识别语音识别语音识别API语音识别步骤效果展示代码下载最近自己想接触下语音识别,经过一番了解和摸索,实现了对语音识别API的简单调用,正好写文章记录下。目前搜到的帖子里,有现成的调用百度语音API来对音频文件进行识别的;也有通过谷歌语音服务来实现了实时语音识别的。由于我这谷歌语音一直调用不成功,就将二者结合,简单实现了通过百度语音API来进行实时语音识别。语音识别语音识别技术就
- 深度神经网络详解:原理、架构与应用
阿达C
活动dnn计算机网络人工智能神经网络机器学习深度学习
深度神经网络(DeepNeuralNetwork,DNN)是机器学习领域中最为重要和广泛应用的技术之一。它模仿人脑神经元的结构,通过多层神经元的连接和训练,能够处理复杂的非线性问题。在图像识别、自然语言处理、语音识别等领域,深度神经网络展示了强大的性能。本文将深入解析深度神经网络的基本原理、常见架构及其实际应用。一、深度神经网络的基本原理1.1神经元和感知器神经元是深度神经网络的基本组成单元。一个
- 本地搭建 Whisper 语音识别模型实现实时语音识别研究
一只老虎
人工智能编程开发算法研究whisper语音识别人工智能
目录摘要关键词1.引言2.Whisper模型简介3.环境准备4.系统架构与实现4.1模型加载4.2实时音频输入处理4.3实时转录处理4.4程序实现的框架4.5代码实现5.实验与结果6.讨论7.结论参考文献摘要语音识别技术近年来发展迅速,广泛应用于智能家居、智能客服、语音助手等领域。Whisper是由OpenAI开发的一种开源语音识别模型,具有高效的转录能力。本研究旨在探讨如何在本地环境中搭建Whi
- 如何从0到1本地搭建whisper语音识别模型
MaxCode-1
搭建本地gptwhisper
文章目录环境准备1.系统要求2.安装依赖项1:安装Python和虚拟环境2:安装Whisper3:下载Whisper模型4:进行语音识别5:提高效率和精度6:开发和集成Whisper是OpenAI发布的一个强大的语音识别模型,它可以将语音转换为文本,支持多语言输入,并且可以处理各种音频类型。以下是一个从0到1的本地搭建Whisper模型进行语音识别教程环境准备1.系统要求操作系统:Linux、Ma
- FunASR 语音识别系统概述
瑞雪兆我心
语音识别人工智能
FunASR(AFundamentalEnd-to-EndSpeechRecognitionToolkit)是一个基础的语音识别工具包,提供多种功能,包括语音识别(ASR)、语音端点检测(VAD)、标点恢复(PR)、语言模型(LM)、说话人分离等。项目源地址1语音识别(ASR)参考语音交互:聊聊语音识别-ASR(万字长文)语音识别技术(AutomaticSpeechRecognition,ASR)
- 使用PyTorch实现的DeepSpeech模型: 强大的语音识别利器
毕艾琳
使用PyTorch实现的DeepSpeech模型:强大的语音识别利器deepspeech.pytorchSpeechRecognitionusingDeepSpeech2.项目地址:https://gitcode.com/gh_mirrors/de/deepspeech.pytorch在今天的数字化世界中,语音识别技术已成为人机交互的关键组成部分。deepspeech.pytorch是一个由Sea
- 使用matlab的热门问题
七十二五
值得关注matlab开发语言青少年编程算法经验分享
MATLAB广泛应用于科学计算、数据分析、信号处理、图像处理、机器学习等多个领域,因此热门问题也涵盖了这些方面。以下是一些可能被认为当前最热门的MATLAB问题:深度学习与神经网络:如何使用MATLAB的深度学习工具箱(DeepLearningToolbox)来构建和训练神经网络?如何利用MATLAB进行图像识别、语音识别或自然语言处理等深度学习应用?数据分析与可视化:如何使用MATLAB进行大数
- 万字详解PHP+Sphinx中文亿级数据全文检索实战(实测亿级数据0.1秒搜索耗时)
小松聊PHP进阶
MySQLPHP全文检索phpsphinxmysqlsql数据库服务器
Sphinx查询性能非常厉害,亿级数据下输入关键字,大部分能在0.01~0.1秒,少部分再5秒之内查出数据。Sphinx官方文档:http://sphinxsearch.com/docs/sphinx3.html极简概括:由C++编写的高性能全文搜索引擎的开源组件,C/S架构,跨平台(支持Linux、Windows、MacOS),支持分布式部署,并可直接适配MySQL。解决问题:因为MySQL的l
- 2021-01-02随笔
0清婉0
人工智能时代最重要的是机器学习,像数据分析、图像识别、数据挖掘、自然语言处理、语音识别等都是以其为基础的,也可以说人工智能的各种应用都需要机器学习来支撑。现在各大公司越来越注重数据的价值,人工成本也是越来越高,所以机器学习也就变得不可或缺了。数据分析、自然语言处理、语音识别,这将是作为前端人员的我,在2021年学习的重点。现收集几本关于数据分析的书籍,作为参考书籍学习:1.《跟着迪哥学Python
- 基于深度学习的对抗样本生成与防御
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的对抗样本生成与防御是当前人工智能安全领域的关键研究方向。对抗样本是通过对输入数据进行微小扰动而产生的,能够导致深度学习模型做出错误预测。这对图像分类、自然语言处理、语音识别等应用构成了严重威胁,因此相应的防御措施也在不断发展。1.对抗样本生成对抗样本生成的方法主要有两大类:基于梯度的方法和基于优化的方法。1.1基于梯度的方法这些方法利用模型的梯度信息,通过细微的扰动来生成对抗样本,迫
- 垂类大模型:领域专家参与的重要性
澳鹏Appen
生成式AI人工智能与机器学习人工智能AI生成式AI
随着人工智能(AI)的不断发展,训练数据的完整性和质量至关重要。早期的AI模型专注于处理和分析任务,如图像识别、语音识别和情感分析。这些模型通常是在大型数据集上训练的,标注任务多可以由具有一般技能的人类执行,早期模型中的缺陷可以被标注员轻松识别和纠正。然而近年,AI领域经历了重大变革。当代模型被设计用于更复杂的功能,如推理和总结,旨在处理需要更高认知参与的复杂和多样化场景。这些先进模型不仅需要原始
- 推荐项目:VITS2 Chinese - 轻松转化你的中文语音至文本
傅尉艺Maggie
推荐项目:VITS2Chinese-轻松转化你的中文语音至文本VITS2-ChineseVITS2forChinesespeech|最新VITS2中文语音合成项目地址:https://gitcode.com/gh_mirrors/vi/VITS2-Chinese项目介绍VITS2Chinese是一个针对中文语音的自动转文字工具,它简化了传统语音识别的复杂流程,让用户只需上传音频文件,就能一键完成语
- 人机交互与现代战争
人机与认知实验室
人机交互
人机交互技术在现代战争中的应用越来越广泛,它可以帮助士兵更好地完成任务,提高作战效能,减少人员伤亡。人机交互与认知在军事应用方面的进展有很多,比如:(1)虚拟现实和增强现实技术:这些技术可以为士兵提供沉浸式的训练环境,模拟各种战斗场景和任务,帮助他们提高技能和决策能力。(2)语音识别和自然语言处理:通过语音识别和自然语言处理技术,士兵可以通过语音指令与武器系统、通信设备等进行交互,提高操作效率和减
- 机器学习-神经网络:循环神经网络(RNN)详解
刷刷刷粉刷匠
机器学习机器学习神经网络rnn
引言在当今人工智能(AI)和深度学习(DL)领域,循环神经网络(RNN)作为一种专门处理序列数据的模型,具有不可忽视的重要性。RNN的设计目标是模拟和处理序列中的时间依赖关系,使其成为许多应用场景的理想选择,如自然语言处理(NLP)、时间序列预测和语音识别等。它不仅能处理固定长度的数据输入,还能应对输入长度不一的序列,从而为各种复杂的时序数据任务提供了强有力的支持。1.RNN的起源与发展循环神经网
- WhisperX: 带时间戳的自动语音识别及说话人分离
史恋姬Quimby
WhisperX:带时间戳的自动语音识别及说话人分离whisperXm-bain/whisperX:是一个用于实现语音识别和语音合成的JavaScript库。适合在需要进行语音识别和语音合成的网页中使用。特点是提供了一种简单、易用的API,支持多种语音识别和语音合成引擎,并且能够自定义语音识别和语音合成的行为。项目地址:https://gitcode.com/gh_mirrors/wh/whisp
- 语音识别 学习笔记2024
AI算法网奇
深度学习基础音视频人工智能
目录dragonfly阿里达摩院FunASR:一款高效的端到端语音识别工具包不错的功能介绍librosa安装语音识别dragonfly阿里达摩院FunASR:一款高效的端到端语音识别工具包不错的功能介绍librosa,一个很有趣的Python库!-简书音频转特征向量GitHub-librosa/librosa:Pythonlibraryforaudioandmusicanalysislibrosa
- 用“说”智能控制灯具开关语音识别芯片NRK3603
九芯电子
九芯电子语音芯片方案语音识别人工智能语音识别技术语音识别芯片语音芯片
用“说”智能控制灯具开关是一种基于语音识别技术的智能家居设备,它通过内置的语音识别芯片,利用离线识别算法,将用户的语音指令实现对灯具的控制,NRK3603语音识别芯片成为客户低成本的离线语音识别方案。功能特性:1.内核和存储高性能32bitRlsc内核,主频160MHZ,内置4MBSPIFLASH。2.AI算法:离线语音识别,采用最新的神经网络(TDNN)算法,具有识别精准,误判率低等优势,5米远
- 快速搭建本地 Whisper 语音识别大模型
码上飞扬
whisper
在语音识别领域,OpenAI的Whisper模型以其高效且准确的特性迅速受到瞩目。许多人可能觉得在本地环境中运行这样一个大模型过于复杂,但其实,经过正确的指导,你完全可以在自己的计算机上搭建一个高性能的语音识别系统。前置准备在开始之前,你需要确保计算机符合以下条件:Python3.7+环境GPU支持(CUDA驱动):尽管CPU也能运行,但GPU会更快。足够的存储空间:模型可能需要几个GB。步骤一:
- 本地搭建和运行Whisper语音识别模型小记
LQS2020
whisper
搭建本地的Whisper语音识别模型可以是一个非常有用的项目,尤其是在需要离线处理语音数据的情况下。Whisper是OpenAI开发的一个开源语音识别模型,支持多语言和高效的转录能力。以下是详细的步骤来本地搭建和运行Whisper语音识别模型:1.准备环境安装Python确保你的系统上安装了Python3.8及以上版本。可以从Python官方网站下载并安装。创建虚拟环境(可选)为了避免依赖冲突,建
- 【AIGC】Whisper语音识别模型概述,应用场景和具体实例及如何本地搭建Whisper语音识别模型?
@我们的天空
AIGCwhisper语音识别AIGCpython人工智能机器学习深度学习
欢迎大家来到我们的天空如果文章内容对您有所触动,别忘了点赞、关注,收藏!作者简介:我们的天空《头衔》:大厂高级软件测试工程师,阿里云开发者社区专家博主,CSDN人工智能领域新星创作者。《博客》:人工智能,深度学习,机器学习,python,自然语言处理,AIGC等分享。所属的专栏:TensorFlow项目开发实战,人工智能技术主页:我们的天空一、Whisper语音识别模型概述Whisper是由Ope
- Python知识点:如何使用Python实现语音识别
超哥同学
Python系列python语音识别xcode编程面试
要在Python中实现语音识别,你可以使用SpeechRecognition库,它是一个功能强大的库,能够识别音频中的语音并将其转换为文本。下面是一个简单的示例代码,展示如何使用这个库进行语音识别。步骤1:安装依赖库首先,你需要安装SpeechRecognition库和pyaudio库。你可以使用以下命令安装这些库:pipinstallSpeechRecognitionpipinstallpyau
- 【机器学习-神经网络】循环神经网络
刷刷刷粉刷匠
机器学习神经网络rnn
在机器学习和深度学习的领域中,循环神经网络(RNN)作为一种处理序列数据的强大工具,已经在诸多应用场景中展现出了巨大的潜力。RNN能够有效地捕捉序列数据中的时序依赖关系,因此在自然语言处理、时间序列预测和语音识别等任务中发挥着至关重要的作用。本文将对RNN进行深入探讨,从其基本理论、工作原理到实际应用及代码实现,全面剖析RNN在现代机器学习中的应用价值。1.RNN基础理论1.1RNN概述循环神经网
- Azure和Transformers的详细解释
漫天飞舞的雪花
azuremicrosoftpython
AzureAI是微软提供的人工智能(AI)解决方案的集合,旨在帮助开发人员、数据科学家和企业轻松构建和部署智能应用程序。以下是对AzureAI各个方面的详细解释:AzureAI主要组件AzureCognitiveServices(认知服务):计算视觉:包括图像识别、物体检测、人脸识别以及图像标注等。语音服务:包括语音识别、语音合成、说话人识别和语音翻译等。语言理解服务:包括文本分析、语言翻译、情感
- 基于人工智能的智能客服系统
嵌入式详谈
人工智能
目录引言项目背景客服系统的现状与挑战AI在客服领域的应用前景系统设计系统架构模块划分关键技术与实现自然语言处理(NLP)对话管理语音识别与合成情感分析数据准备与训练数据收集数据预处理模型训练系统集成与部署前端接口设计后端服务实现系统集成部署方案测试与优化系统测试性能优化用户反馈与迭代应用场景与案例分析电子商务客服银行与金融服务医疗健康咨询常见问题及解决方案常见问题解决方案未来发展与展望结论1.引言
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http