判断点是否在多边形内,我的这个模板好久没用了。。。用了下,蛮顺利的。。
#include <queue> #include <stack> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <iostream> #include <limits.h> #include <string.h> #include <string> #include <algorithm> using namespace std; const int MAX = 1010; struct point { double x,y;}; struct segment{ point a,b;}; point p[MAX]; const double eps = 1e-6; bool dy(double x,double y) { return x > y + eps;} // x > y bool xy(double x,double y) { return x < y - eps;} // x < y bool dyd(double x,double y) { return x > y - eps;} // x >= y bool xyd(double x,double y) { return x < y + eps;} // x <= y bool dd(double x,double y) { return fabs( x - y ) < eps;} // x == y double crossProduct(point a,point b,point c)//向量 ac 在 ab 的方向 { return (c.x - a.x)*(b.y - a.y) - (b.x - a.x)*(c.y - a.y); } bool onSegment(point a, point b, point c) { double maxx = max(a.x,b.x); double maxy = max(a.y,b.y); double minx = min(a.x,b.x); double miny = min(a.y,b.y); if( dd(crossProduct(a,b,c),0.0) && dyd(c.x,minx) && xyd(c.x,maxx) && dyd(c.y,miny) && xyd(c.y,maxy) ) return true; return false; } point intersection(point u1,point u2,point v1,point v2) { point ans = u1; double t = ((u1.x - v1.x)*(v1.y - v2.y) - (u1.y - v1.y)*(v1.x - v2.x))/ ((u1.x - u2.x)*(v1.y - v2.y) - (u1.y - u2.y)*(v1.x - v2.x)); ans.x += (u2.x - u1.x)*t; ans.y += (u2.y - u1.y)*t; return ans; } bool segIntersect(point p1,point p2, point p3, point p4) { double d1 = crossProduct(p3,p4,p1); double d2 = crossProduct(p3,p4,p2); double d3 = crossProduct(p1,p2,p3); double d4 = crossProduct(p1,p2,p4); if( xy(d1 * d2,0.0) && xy(d3 * d4,0.0) ) return true; if( dd(d1,0.0) && onSegment(p3,p4,p1) ) return true;//如果不判端点相交,则下面这四句话不需要 if( dd(d2,0.0) && onSegment(p3,p4,p2) ) return true; if( dd(d3,0.0) && onSegment(p1,p2,p3) ) return true; if( dd(d4,0.0) && onSegment(p1,p2,p4) ) return true; return false; } bool point_inPolygon(point pot,point p[],int n) { int count = 0; segment l; l.a = pot; l.b.x = 1e10; l.b.y = pot.y; p[n] = p[0]; for(int i=0; i<n; i++) { if( onSegment(p[i],p[i+1],pot) ) return true; if( !dd(p[i].y,p[i+1].y) ) { int tmp = -1; if( onSegment(l.a,l.b,p[i]) ) tmp = i; else if( onSegment(l.a,l.b,p[i+1]) ) tmp = i+1; if( tmp != -1 && dd(p[tmp].y,max(p[i].y,p[i+1].y)) ) count++; else if( tmp == -1 && segIntersect(p[i],p[i+1],l.a,l.b) ) count++; } } if( count % 2 == 1 ) return true; return false; } int main() { int n; point pot; while( ~scanf("%d",&n) && n ) { for(int i=0; i<n; i++) scanf("%lf%lf",&p[i].x,&p[i].y); scanf("%lf%lf",&pot.x,&pot.y); bool ans = point_inPolygon(pot,p,n); if( ans ) printf("T/n"); else printf("F/n"); } return 0; }