找出1~10^n中数字翻转过来是本身的数( 96 ->96, 18 -> 81, 0 -> 0, 其他数字翻过来都不是数字)
【思路】
用动态规划来做。
if i is even, f[i] = f[i-1] + f[i-2] * 2
if i is odd, f[i] = f[i-1] * 3
// f[3] = f[2]*3 = 12;
// 101, 808, 609, 906
// 111, 818, 619, 916
// 181, 888, 689, 986
// f[4] = f[3] + f[2]*2 = 20
// - insert the same middle digit to every number in f[3]
// 1001, 8008, 6009, 9006
// 1111, 8118, 6119, 9116
// 1881, 8888, 6889, 9886
// - insert 69, 96 to every number in f[2]
// 1691, 8698, 6699, 9696
// 1961, 8968, 6969, 9966
public static int count180Number(int n) { // n is number of digits int[] f = new int[n+1]; f[1] = 2; // 1, 8 f[2] = 4; // 11, 88, 69, 96 for(int i=3; i<=n; i++) { if(i % 2 == 0) { // i is even f[i] = f[i-1] + f[i-2] * 2; } else { f[i] = f[i-1] * 3; } } int cnt = 0; for(int num:f) { cnt += num; } return cnt; }
后面的部分都不对或者跟本题无关,请忽略。
有一个密码锁,它由6位数字组成(都是0~9的数字),我们如果将这六位数字顺时针旋转180度,它还是一个有效的6位数字的概率是多少?
如果要回答这个问题,我们可以先来观察一下这10个数字。
-
0 1 2 3 4 5 6 7 8 9
若将这10个数字倒过来便是
当然,他的数字都是表示成那种电子钟表的格式的,所以5和2倒过来还是它们自己。1倒过来还算是1,这个和面试官确认过了。这时我们可以发现还有7个数字是有效的,那 么6位的密码锁倒过来还是有效的概率就是0.7的六次方。
第二个问题是由第一个问题的基础上提出的,在旋转之后还是一个有效数字的基础上,将这个6位的密码锁旋转之后六位数字与原来数字相同的概率是多少?
这个问题需要好好思考下,标记6位数字为 abcdef ,旋转之后就变成了T(fedcba),其中T()操作会将每一位的数字旋转180度。
我们再来观察下,若想要af旋转180度还是af的话,有以下几种情况:
(0,0)、(1,,1)、(2,2)、(5,5)、(8,8)、(6,9)、(9,6)
也就是说我们需要将六位数字分为(1,6)、(2,5)和(3,4)这三组。这三组的组合可以有6的三次方(也就是216种组合)。那么这个概率就很好求了,只需将216除以7的六次方就行了。最后结果是216/117649
A valid number may not contain 2,3,4,5,7. Flip those numbers 180 degrees and
it's not a valid number. Single digit numbers is a special case. It
contains 0, 1, 8. For 2N digit numbers, the first digit can be 1,6,8,9 and
the next N-1 digits can be 0,1,6,8,9. For 2N+1 digit numbers, you can insert
0,1,8 in the middle of any valid 2N digit numbers and it's still a valid
number.
1 digit: 3
2N digit: 4 * 5 ^ (N-1)
2N+1 digit: 3 * 4 * 5 ^ (N-1)
For example, there are 20 valid 4 digit numbers:
10 => 1001, 11 => 1111, 16 => 1691, 18 => 1881, 19 => 1961
60 => 6009, 61 => 6119, 66 => 6699, 68 => 6889, 69 => 6969
80 => 8008, 81 => 8118, 86 => 8698, 88 => 8888, 89 => 8968
90 => 9006, 91 => 9116, 96 => 9696, 98 => 9886, 99 => 9966
there are 60 valid 5 digit numbers
1001 => 10001, 10101, 10801 etc
public static int getNumMirrors(String limit)
{
byte[] n = limit.getBytes();
int digits = n.length;
for (int i = 0; i < digits; i++)
{
n[i] -= '0';
}
if (digits == 1)
{
return getNumMirrorsSingleDigit(n[0]);
}
else
{
return getNumMirrorsLessThanKDigits(digits) +
getNumKDigitMirrorsLessThanN(n, digits);
}
}
private static int getNumMirrorsSingleDigit(int n)
{
if (n >=8) return 3;
if (n >=1) return 2;
return 1;
}
private static int getNumMirrorsLessThanKDigits(int digits)
{
int sum = 3; // 0, 1, 8
int base = 4; // 1, 8, 6, 9
for (int i = 1; i < digits/2; i++)
{
sum += 4 * base;
base *= 5;
}
if (digits % 2 == 1)
{
sum += base;
}
return sum;
}
private static int getNumKDigitMirrorsLessThanN(byte[] n, int digits)
{
int sum;
int base = 1;
boolean isNMirror;
for (int i = 1; i < digits/2; i++)
{
base *= 5;
}
if (digits % 2 == 1)
{
base *= 3;
}
switch (n[0]) // 1, 6, 8, 9
{
// n=987654321, add all mirrors between 0 and 900000000
case 9: sum = 3 * base; isNMirror = n[digits-1] == 6; break;
case 8: sum = 2 * base; isNMirror = n[digits-1] == 8;break;
case 7: return 2 * base;
case 6: sum = base; isNMirror = n[digits-1] == 9;break;
case 1: sum = 0; isNMirror = n[digits-1] == 1;break;
default: return base;
}
for (int i = 1; i < digits/2; i++)
{
base /= 5;
switch (n[i]) // 0, 1, 6, 8, 9
{
// n=987654321, i=1, add all mirrors between 900000000 and 980000000
case 9: sum += 4 * base; isNMirror &= n[digits-i-1] == 6; break;
case 8: sum += 3 * base; isNMirror &= n[digits-i-1] == 8; break;
case 7: return 3 * base;
case 6: sum += 2 * base; isNMirror &= n[digits-i-1] == 9; break;
case 1: sum += base; isNMirror &= n[digits-i-1] == 1; break;
case 0: isNMirror &= n[digits-i-1] == 0; break;
default: return sum + 2 * base;
}
}
if (digits % 2 == 1)
{
switch (n[digits/2]) // 0, 1, 8
{
case 9: return sum + 3;
case 8: sum += 2; break;
case 1: sum += 1; break;
case 0: break;
default: return sum + 2;
}
}
return isNMirror ? sum + 1 : sum;
}