Mongodb Hbase oracle

Mongodb/hbase Oracle
减少表 实现十分复杂的数据形式的存储 (大对象) 传统   (小对象)
分片,集群 维护方便 分区麻烦
海量数据TB级别 (更大的要用hbase) 小数据量 GB级别
文档存储 / 列式存储 ACID
性价比高(廉价的硬盘) 成本高


HBase的优点:
分布式,易扩展,高性价比,运维成本低都是它的优点。HBase可以支持海量数据,单张表的数据量不上T,都不好意思出来打招呼。甚至可以拿很烂的SATA盘来作为存储,由于依赖底层的HDFS。新装的机器甚至可以不用做硬RAID。
HBase可以在任何时候随时宕掉2,3台机器,就当什么都没发生似的(当然master除外,但是HBase,hadoop的master节点负载都很”清闲“)。这是HBase本身分布式的架构,先天性的优势。


那么MongoDB究竟应该怎么用呢?
首先,忘记SQL
你应该忘记你学过的那些优雅无敌的SQL,不是说为了提升检索性能,扔索引就有好处。
有一个简单的事实如下:只有一个默认的_id 索引,此时插入性能为1,你再加一个索引,插入性能约1/2,再加一个约1/3 ,以此类推......
如果这个事实对你是很震撼的,那说明你还没有忘记SQL,接着忘。
MongoDB的索引对插入性能有着不可忽略的拖后腿效应,所以,我们应该使用且仅使用 _id 作为插入key,作为查询key,作为所有的那个key。
其次,直接忘记搜索这件事。
把MongoDB当做你的硬盘,给他文件名去操作文件.这就是Key-Value数据库的做法,你稍加设计就能这么用。
那么其实你所有的操作可以简化为两个指令,逻辑上 就是一个字典
你给他_id,往字典里插一个数据,或者拿一个数据。
Save({_id:xxx,.....})
FindOne({_id:xxx})
要想高性能,善用那个_id,把你原来准备当主键的那个玩意,hash成_id.
把你原来准备的查询条件,什么?查询,拿_id来,别的全砍掉。
第三、这不是数据表
记住,这不是数据表,一个_id对应的东西不是一行数据,而是一个文件。
文件存储和表存储有什么不同呢?
我举个例子,比如我们要存储用户列表和每个用户的道具列表。
数据表的做法是建一张用户表,一张道具表,道具表里有个字段表示他属于哪个用户。
然后,你就离不开万恶的查询了。
然后如果一个用户有100条道具,100万用户意味着道具表有一亿条记录。
这时候就开始考验你的小数据库了,但这都是过去式了,这一亿的道具,用MongoDB,根本不是个事儿
因为MongoDB的方法是当做文件存,只设计一个用户集合,每个用户的信息是一个文件,然后这100个道具就分开存在每个用户的文件里。
然后来比较一下,我们取得用户的记录,然后从中拿出100个道具,NoSQL方法。
查一亿的表,找出属于某个用户的记录。
熟快熟慢?
然后你可能回想,SQL方法,我也可以搞个道具字段,把用户的100个道具用某种协议打包,然后操作啊,一样可以取得巨大的优化呀。
没错,你的想法很好,你正在用NOSQL的方式用SQL。
第四、文件存储的精华之处
如果问题止于此处,MongoDB就毫无优势可言了,如果这个方法在SQL数据库上也是如此容易使用,那还费劲搞MongoDB干什么?
我们再折腾一点,如果每个道具还要存100条转手记录,你还是可以打包,但你这个打包字段已经1M了。
于是每次存取这个打包字段都是一个系统工程了,还要负担1M的流量。
MongoDB这边呢?我们可以直接对文件的一部分进行读写,比如我只返回一个用户的第二个道具的信息,和返回第二个道具的第1~30条转手记录。
这,是一种怎样的差距啊。
你想要一张美女的照片,你朋友有,但是他只有一个压缩包,他那里没有解包工具,于是他把整个包传给了你。他想问你要一张照片,但是他没有压缩工具,为了存档需要,他让你再压进包里传给他。
这个朋友就是你的用户表的一行,如果换成真实世界的事件是多么的不可思议,这就是在一个字段里打包数据的问题。
MongoDB的一条记录就是一个脑筋更正常的朋友,你要他一张照片,他从包里找出来给你。你给他一张照片,他分门别类的放置到他的包里去。
用文件的思维去访问,MongoDB是一个更好的朋友。
审视一下你项目中的大部分的数据需求,是不是都可以用这种方式去组织呢?
如果是,加入NOSQL吧,我们的口号是:很暴力不SQL

你可能感兴趣的:(mongodb)