http://acm.hdu.edu.cn/showproblem.php?pid=2852&&树状数组+二分

#include<iostream>
#include<string.h>
#include<algorithm>
#include<cstdio>
#define N 100001
using namespace std;
int s[N];
inline int lowbit(int i)
{ return i&(-i);}
void update(int x,int a)
{     while(x<=N)
     {   s[x]+=a;
         x+=lowbit(x);
     }
}
int Quary(int x)
{   int sum=0;
     while(x>0)
	 { sum+=s[x];
	   x-=lowbit(x);
	 }
	 return sum;
}
int find(int a,int k)
{  int ans=N;
   int l=a+1;
   int r=N;
   int p=Quary(a);
   while(l<=r)
   {  int mid=(l+r)>>2;
      int q=Quary(mid);
      if(q-p>=k)
	  {  r=mid-1;
	     if(mid<ans)
		  ans=mid;
	   }
	  else  l=mid+1;
   }
   return ans;
}
int main()
{ int n;
  while(~scanf("%d",&n))
  {   memset(s,0,sizeof(s));
	  for(int i=0;i!=n;++i)
    {    int  a;
	     //cin>>a;
	    scanf("%d",&a);
		 if(a==0)
		 { int b;
		    //cin>>b;
		    scanf("%d",&b);
			update(b,1);
		 }
		 else if(a==1)
		 {  int b;
		    //cin>>b;
		    scanf("%d",&b);
			if(Quary(b)-Quary(b-1)==0)
				cout<<"No Elment!"<<endl;
			else update(b,-1);
		 }
		 else 
		  {  int b,k;
		      //cin>>b>>k;
		      scanf("%d%d",&b,&k);
			  int c=find(b,k);
			  if(c==N) cout<<"Not Find!"<<endl;
			  else printf("%d\n",c);
		 }
	  }
}return 0;
}
//树状数组修改和查找都是log(n)级别的数据结构,本题是树状数组的一个应用,用树状数组来实现插入update(a,1);删除update(a,-1)
//这里让查找的不是某个具体的元素而是比它大的第k大元素,假设第k大元素所在位置为num,则根据树状数组的性质k=Quary(num)-Quary(a+1)
//这里为了让查找级别也为log级别的用了二分查找。

你可能感兴趣的:(http://acm.hdu.edu.cn/showproblem.php?pid=2852&&树状数组+二分)