[poj 1741] Tree 树上点分治

题目: http://poj.org/problem?id=1741
Tree
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 16555 Accepted: 5396

Description
Give a tree with n vertices,each edge has a length(positive integer less than 1001).
Define dist(u,v)=The min distance between node u and v.
Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k.
Write a program that will count how many pairs which are valid for a given tree.

Input
The input contains several test cases. The first line of each test case contains two integers n, k. (n<=10000) The following n-1 lines each contains three integers u,v,l, which means there is an edge between node u and v of length l.
The last test case is followed by two zeros.

Output
For each test case output the answer on a single line.

Sample Input

5 4
1 2 3
1 3 1
1 4 2
3 5 1
0 0

Sample Output

8
题意:
给一棵边带权树,问两点之间的距离小于等于K的点对有多少个;

思路
第一道点分治。。。。
dfs+枚举的复杂度n^2不接受;
因为树的特点进行点分治:O(n logn^2)
nlog n 计算对于每个子树的经过该子树的根的方案数;
即 求出子树中now到所有点j的
路径长度dis[j],*logn 的排序统计;

1.对于每个solve(x),处理的是x子树的重心这样,最多经过logn层(重心dfs求最大子树节点个数最少)

2.cal(x)统计答案,x子树中满足dis[x]+dix[y]<=K 的方案数;因cal(x)处理的不是经过不同的子树的,即from【i】与from【j】可能相等,重复计算了,故ans-cal(子树 x(K-=dis【x】【子树x】))的和;

代码

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
#define N 10005
using namespace std;
struct node{
    int x,y;
    node(int xx,int yy)
    {
        x=xx,y=yy;
    }
};
vector<node> lin[N];
vector<int> d;
int sz[N],f[N];//sz[x]-->x的树大小,f[x]-->x最大子树的节点数;
int n;
int rt;
int vis[N],dis[N];
int K;
int ans,size;
int aa,bb,cc;
void getrt(int x,int fa)//利用*sz,*f求重心
{
    sz[x]=1;
    f[x]=0;
    for(int i=0;i<lin[x].size();i++)
    {
        int u=lin[x][i].x;
        if(vis[u]||u==fa) continue;
        getrt(u,x);
        sz[x]+=sz[u];
        f[x]=max(sz[u],f[x]);
    }
    f[x]=max(f[x],size-sz[x]);//! x最大子树的节点数=max(与此子树大小-f[x],f[x])
    if(f[x]<f[rt]) rt=x; 
}
void getdis(int x,int fa)//一遍dfs求距离+求重心的一点预处理sz[x],求子树大小size
{
    sz[x]=1;
    d.push_back(dis[x]);
    for(int i=0;i<lin[x].size();i++)
    {
        int u=lin[x][i].x;
        if(vis[u]||u==fa) continue;     
        dis[u]=dis[x]+lin[x][i].y;
        getdis(u,x);
        sz[x]+=sz[u];       
    }
}
int cal(int x,int y)
{   
    int ret=0;
    d.clear();
    dis[x]=y;
    getdis(x,0);

    sort(d.begin(),d.end());
    int l=0;
    int r=d.size()-1;
    while(l<r)
    {
        while(d[l]+d[r]>K&l<r) r--;
        ret+=r-l;
        l++;    
    }
    return ret;
}
void solve(int x)
{
    //cout<<x<<endl;
    ans+=cal(x,0);
    vis[x]=1;
    for(int i=0;i<lin[x].size();i++)
    {
        int u=lin[x][i].x;
        if(vis[u]) continue;
        ans-=cal(u,lin[x][i].y);
        f[0]=size=sz[u];//!!! getdis中已经处理子树的全大小
        getrt(u,rt=0);
        solve(rt);
    }

}
int main()
{
    while(scanf("%d%d",&n,&K))
    {
        if(!n&&!K) return 0;
        for(int i=1;i<=n;i++)
        {
            vis[i]=0;
            lin[i].clear();
        }
        for(int i=1;i<n;i++)
        {
            scanf("%d%d%d",&aa,&bb,&cc);
            lin[aa].push_back(node(bb,cc));
            lin[bb].push_back(node(aa,cc)); 
        }   
        ans=0;
        f[0]=size=n;
        getrt(1,rt=0);  
        solve(rt);
        printf("%d\n",ans);
    }
}       

你可能感兴趣的:(poj,点分治)