POJ3468A Simple Problem with Integers线段树

A Simple Problem with Integers
Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 76346   Accepted: 23520
Case Time Limit: 2000MS

Description

You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of AaAa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15
题目地址

http://poj.org/problem?id=3468

题目大意

给定Q (1 ≤ Q ≤ 100,000)个数A1,A2 … AQ,, 以及可能多次进行的两个操作: 1) 对某个区间Ai … Aj的每个数都加n(n可变 ) 2)  求某个区间Ai … Aj的数的和 

思路

这道题是区间更新,只存和,会导致每次加数的时候都要更新到叶子节点,速度太慢(O(nlogn)),这是必 须要避免的。 

在增加时,如果要加的区间正好覆盖一个 节点,则增加其节点的Inc值,不再往下走 ,否则要更新nSum(加上本次增量),再将增 量往下传。这样更新的复杂度就是O(log(n))  
在查询时,如果待查区间不是正好覆盖一 个节点,就将节点的Inc往下带,然后将Inc 代表的所有增量累加到nSum上后将Inc清0 ,接下来再往下查询。 Inc往下带的过程也是 区间分解的过程,复杂度也是O(log(n)) 

#include<iostream>
using namespace std;
struct Node
{
	int l,r;
	long long nsum;
	long long inc;
	Node *pleft,*pright;
};
Node tree[200010];
int ncount=0;
int mid(Node *proot)
{
	return (proot->l+proot->r)/2;
}
void buildtree(Node *proot,int l,int r)
{
	proot->l=l;
	proot->r=r;
	proot->nsum=0;
	proot->inc=0;
	if(l==r)
		return;
	ncount++;
	proot->pleft=tree+ncount;
	ncount++;
	proot->pright=tree+ncount;
	buildtree(proot->pleft,l,(l+r)/2);
	buildtree(proot->pright,(l+r)/2+1,r);
}
void Inseert(Node *proot,int i,int v)
{
	if(proot->l==i&&proot->r==i)
	{
		proot->nsum=v;
		return;
	}
	proot->nsum+=v;
	if(i<=mid(proot))
		Inseert(proot->pleft,i,v);
	else 
		Inseert(proot->pright,i,v);
}
void add(Node *proot,int a,int b,long long c)
{
	if(proot->l==a&&proot->r==b)
	{
		proot->inc+=c;
		return;
	}
	proot->nsum+=(b-a+1)*c;
	if(a>=mid(proot)+1)
		add(proot->pright,a,b,c);
	else if(b<=mid(proot))
		add(proot->pleft,a,b,c);
	else
	{
		add(proot->pleft,a,mid(proot),c);
		add(proot->pright,mid(proot)+1,b,c);
	}
}
long long querysum(Node *proot,int a,int b)
{
	if(proot->l==a&&proot->r==b)
	{
		return proot->nsum+(b-a+1)*proot->inc;
	}
	proot->nsum+=(proot->r-proot->l+1)*proot->inc;
	add(proot->pleft,proot->l,mid(proot),proot->inc);
	add(proot->pright,mid(proot)+1,proot->r,proot->inc);
	proot->inc=0;
	if(b<=mid(proot))
		return querysum(proot->pleft,a,b);
	else if(a>=mid(proot)+1)
		return querysum(proot->pright,a,b);
	else{
		return querysum(proot->pleft,a,mid(proot))+querysum(proot->pright,mid(proot)+1,b);
	}
}
int main()
{
	int n,q,a,b,c;
	char cmd[10];
	scanf("%d%d",&n,&q);
	int i,j,k;
	ncount=0;
	buildtree(tree,1,n);
	for(i=1;i<=n;i++)
	{
		scanf("%d",&a);
		Inseert(tree,i,a);
	}
	for(i=0;i<q;i++)
	{
		scanf("%s",cmd);
		if(cmd[0]=='C')
		{
			scanf("%d%d%d",&a,&b,&c);
			add(tree,a,b,c);
		}
		else{
			scanf("%d%d",&a,&b);
			printf("%I64d\n",querysum(tree,a,b));
		}
	}
	return 0;
} 




你可能感兴趣的:(POJ3468A Simple Problem with Integers线段树)