Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 76346 | Accepted: 23520 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15题目地址
http://poj.org/problem?id=3468
题目大意
给定Q (1 ≤ Q ≤ 100,000)个数A1,A2 … AQ,, 以及可能多次进行的两个操作: 1) 对某个区间Ai … Aj的每个数都加n(n可变 ) 2) 求某个区间Ai … Aj的数的和
思路
这道题是区间更新,只存和,会导致每次加数的时候都要更新到叶子节点,速度太慢(O(nlogn)),这是必 须要避免的。
在增加时,如果要加的区间正好覆盖一个 节点,则增加其节点的Inc值,不再往下走 ,否则要更新nSum(加上本次增量),再将增 量往下传。这样更新的复杂度就是O(log(n))
在查询时,如果待查区间不是正好覆盖一 个节点,就将节点的Inc往下带,然后将Inc 代表的所有增量累加到nSum上后将Inc清0 ,接下来再往下查询。 Inc往下带的过程也是 区间分解的过程,复杂度也是O(log(n))
#include<iostream> using namespace std; struct Node { int l,r; long long nsum; long long inc; Node *pleft,*pright; }; Node tree[200010]; int ncount=0; int mid(Node *proot) { return (proot->l+proot->r)/2; } void buildtree(Node *proot,int l,int r) { proot->l=l; proot->r=r; proot->nsum=0; proot->inc=0; if(l==r) return; ncount++; proot->pleft=tree+ncount; ncount++; proot->pright=tree+ncount; buildtree(proot->pleft,l,(l+r)/2); buildtree(proot->pright,(l+r)/2+1,r); } void Inseert(Node *proot,int i,int v) { if(proot->l==i&&proot->r==i) { proot->nsum=v; return; } proot->nsum+=v; if(i<=mid(proot)) Inseert(proot->pleft,i,v); else Inseert(proot->pright,i,v); } void add(Node *proot,int a,int b,long long c) { if(proot->l==a&&proot->r==b) { proot->inc+=c; return; } proot->nsum+=(b-a+1)*c; if(a>=mid(proot)+1) add(proot->pright,a,b,c); else if(b<=mid(proot)) add(proot->pleft,a,b,c); else { add(proot->pleft,a,mid(proot),c); add(proot->pright,mid(proot)+1,b,c); } } long long querysum(Node *proot,int a,int b) { if(proot->l==a&&proot->r==b) { return proot->nsum+(b-a+1)*proot->inc; } proot->nsum+=(proot->r-proot->l+1)*proot->inc; add(proot->pleft,proot->l,mid(proot),proot->inc); add(proot->pright,mid(proot)+1,proot->r,proot->inc); proot->inc=0; if(b<=mid(proot)) return querysum(proot->pleft,a,b); else if(a>=mid(proot)+1) return querysum(proot->pright,a,b); else{ return querysum(proot->pleft,a,mid(proot))+querysum(proot->pright,mid(proot)+1,b); } } int main() { int n,q,a,b,c; char cmd[10]; scanf("%d%d",&n,&q); int i,j,k; ncount=0; buildtree(tree,1,n); for(i=1;i<=n;i++) { scanf("%d",&a); Inseert(tree,i,a); } for(i=0;i<q;i++) { scanf("%s",cmd); if(cmd[0]=='C') { scanf("%d%d%d",&a,&b,&c); add(tree,a,b,c); } else{ scanf("%d%d",&a,&b); printf("%I64d\n",querysum(tree,a,b)); } } return 0; }