【USACO3.2.6】香甜的黄油 最短路径

按照题目意思,就是求: 从K点开始,到所有点的最短路径之和。


穷举K即可。  最短路算法,我用的是SPFA。


SPFA+SLF优化:

Compiling...
Compile: OK

Executing...
   Test 1: TEST OK [0.005 secs, 3508 KB]
   Test 2: TEST OK [0.003 secs, 3508 KB]
   Test 3: TEST OK [0.005 secs, 3508 KB]
   Test 4: TEST OK [0.005 secs, 3508 KB]
   Test 5: TEST OK [0.011 secs, 3508 KB]
   Test 6: TEST OK [0.022 secs, 3508 KB]
   Test 7: TEST OK [0.049 secs, 3508 KB]
   Test 8: TEST OK [0.051 secs, 3508 KB]
   Test 9: TEST OK [0.078 secs, 3508 KB]
   Test 10: TEST OK [0.084 secs, 3508 KB]

All tests OK.

/*
TASK:butter
LANG:C++
*/
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;

int cows, pastures, paths;
const int savebuff = 50;
int a[500 + savebuff], f[1000];
bool vis[1000];
int ans = 0x7fffffff;
struct edge
{
	int dot, dis;
	edge *next;
	edge()
	{
		dot = dis = -1;
		next = NULL;
	}
	edge(int DOT_, int DIS_, edge *NEXT_)
	{
		dot = DOT_;
		dis = DIS_;
		next = NEXT_;
	}
}*x[800 + savebuff];

inline void insert(int A, int B, int dis)
{
	x[A] = new edge(B, dis, x[A]);
}
deque<int>q;
void SPFA(int s)
{
	q.push_back(s);
	memset(f, 60, sizeof(f));
	memset(vis, false, sizeof(vis));
	f[s] = 0;
	vis[s] = true;
	while (!q.empty())
	{
		int now = q.front();
		vis[now] = false;
		q.pop_front();
		for (edge *i = x[now]; i; i = i -> next)
		{
			int will = i -> dot;
			int cost = i -> dis;
			if (f[now] + cost < f[will])
			{
				f[will] = f[now] + cost;
				if (!vis[will])
				{
					if (!q.empty() && f[will] < f[q.front()])	q.push_front(will);
					else	q.push_back(will);
				}
			}
		}
	}
	int tmpans = 0;
	for (int i = 0; i != cows; ++ i)	tmpans += f[a[i]];
	if (tmpans < ans)	ans = tmpans;
}

int main()
{
	freopen("butter.in","r",stdin);
	freopen("butter.out","w",stdout);
	memset(x, NULL, sizeof(x));
	scanf("%d%d%d", &cows, &pastures, &paths);
	for (int i = 0; i != cows; ++ i)	scanf("%d", a+i);
	while (paths--)
	{
		int ta, tb, tc;
		scanf("%d%d%d", &ta, &tb, &tc);
		insert(ta, tb, tc);
		insert(tb, ta, tc);
	}
	for (int i = 1; i <= pastures; ++ i)	SPFA(i);
	printf("%d\n", ans);
	return 0;
}




==============


SPFA的LLL+SLF优化: 速度更慢,就不贴代码了。



你可能感兴趣的:(【USACO3.2.6】香甜的黄油 最短路径)