前面使用 GCC 4.7, MinGW4.7 以及 boost 在 windows, Ubuntu下测试了C++11 的新特性,这次,把 Ubuntu 下的C++11测试代码直接挪到Windows 8 + Visual Stuido 2012 Express下,支持还是比较好的!测试环境:WIndows XP Host + Vmbox 4.2 +windows 8 企业试用版, visual studio 2012 Express for Windows Desktop,
顺便提一下,WIndows8 速度不错,虚拟机下 跑 VStudio 还很快的。
测试内容:
1、std::thread, 条件变量、mutex
2、lamda表达式,function, std::bind
3、nullptr类型
4、foreach (在algorithm里)
至于0x里已经有的 std::move, auto, regex, tumple等就算了。
#include "stdafx.h" #include <iostream> #include <thread> #include <mutex> #include <functional> #include <list> #include <atomic> #include <vector> #include <stdlib.h> #include <time.h> #include <assert.h> #include <memory> #include <condition_variable> #include <algorithm> //This class defines a class contains a thread, a task queue class cpp11_thread { public: cpp11_thread() :m_b_is_finish(false) ,m_pthread(nullptr) { } ~cpp11_thread() { m_list_tasks.clear(); if (m_pthread!=nullptr) delete m_pthread; } public: //wait until this thread is terminated; void join() { terminate(); if (m_pthread!=nullptr) m_pthread->join(); } //wait until this thread has no tasks pending. void wait_for_idle() { while(load()) std::this_thread::sleep_for(std::chrono::milliseconds(200)); } //set the mask to termminiate void terminate() { m_b_is_finish = true; m_cond_incoming_task.notify_one(); } //return the current load of this thread size_t load() { size_t sz = 0; m_list_tasks_mutex.lock(); sz = m_list_tasks.size(); m_list_tasks_mutex.unlock(); return sz; } //Append a task to do size_t append(std::function< void (void) > func) { if (m_pthread==nullptr) m_pthread = new std::thread(std::bind(&cpp11_thread::run,this)); size_t sz = 0; m_list_tasks_mutex.lock(); m_list_tasks.push_back(func); sz = m_list_tasks.size(); //if there were no tasks before, we should notidy the thread to do next job. if (sz==1) m_cond_incoming_task.notify_one(); m_list_tasks_mutex.unlock(); return sz; } protected: std::atomic< bool> m_b_is_finish; //atomic bool var to mark the thread the next loop will be terminated. std::list<std::function< void (void)> > m_list_tasks; //The Task List contains function objects std::mutex m_list_tasks_mutex; //The mutex with which we protect task list std::thread * m_pthread; //inside the thread, a task queue will be maintained. std::mutex m_cond_mutex; //condition mutex used by m_cond_locker std::condition_variable m_cond_incoming_task; //condition var with which we notify the thread for incoming tasks protected: void run() { // loop wait while (!m_b_is_finish) { std::function< void (void)> curr_task ; bool bHasTasks = false; m_list_tasks_mutex.lock(); if (m_list_tasks.empty()==false) { bHasTasks = true; curr_task = *m_list_tasks.begin(); } m_list_tasks_mutex.unlock(); //doing task if (bHasTasks) { curr_task(); m_list_tasks_mutex.lock(); m_list_tasks.pop_front(); m_list_tasks_mutex.unlock(); } if (!load()) { std::unique_lock< std::mutex> cond_locker(m_cond_mutex); //using this lock to wait for signals; m_cond_incoming_task.wait_for(cond_locker,std::chrono::milliseconds(500));//m_cond_incoming_task.wait(m_cond_locker); } } } }; //the thread pool class class cpp11_thread_pool { public: cpp11_thread_pool(int nThreads) :m_n_threads(nThreads) { assert(nThreads>0 && nThreads<=512); for (int i = 0; i< nThreads ;i++) m_vec_threads.push_back(std::shared_ptr<cpp11_thread>(new cpp11_thread())); } ~cpp11_thread_pool() { } public: //total threads; size_t count(){return m_vec_threads.size();} //wait until all threads is terminated; void join() { std::for_each(m_vec_threads.begin(),m_vec_threads.end(),[this](std::shared_ptr<cpp11_thread> & item) { item->terminate(); item->join(); }); } //wait until this thread has no tasks pending. void wait_for_idle() { int n_tasks = 0; do { if (n_tasks) std::this_thread::sleep_for(std::chrono::milliseconds(200)); n_tasks = 0; std::for_each(m_vec_threads.begin(),m_vec_threads.end(),[this,&n_tasks](std::shared_ptr<cpp11_thread> & item) { n_tasks += item->load(); }); }while (n_tasks); } //set the mask to termminiate void terminate() { std::for_each(m_vec_threads.begin(),m_vec_threads.end(),[this](std::shared_ptr<cpp11_thread> & item) { item->terminate(); }); } //return the current load of this thread size_t load(unsigned int n) { return (n>=m_vec_threads.size())?0:m_vec_threads[n]->load(); } //Append a task to do void append(std::function< void (void) > func) { int nIdx = -1; unsigned int nMinLoad = -1; for ( int i=0;i<m_n_threads;i++) { if (nMinLoad> m_vec_threads[i]->load()) { nMinLoad = m_vec_threads[i]->load(); nIdx = i; } } assert(nIdx>=0 && nIdx<m_n_threads); m_vec_threads[nIdx]->append(func); } protected: //NO. threads int m_n_threads; //vector contains all the threads std::vector<std::shared_ptr<cpp11_thread> > m_vec_threads; }; //a function which will be executed in sub thread. void hello() { //sleep for a while std::this_thread::sleep_for(std::chrono::milliseconds(rand()%900+100)); std::cout << "Hello world, I'm a function runing in a thread!" << std::endl; } //a class has a method, which will be called in a thread different from the main thread. class A { private: int m_n; public: A(int n) :m_n(n) {} ~A(){} public: void foo (int k) { //sleep for a while std::this_thread::sleep_for(std::chrono::milliseconds(rand()%900+100)); std::cout <<"n*k = "<<k*m_n<<std::endl; m_n++; } }; //let's test the thread. int main() { cpp11_thread_pool thread(2); srand((unsigned int)time(0)); A a(1),b(2),c(3); int nsleep = rand()%900+100; //append a simple function task thread.append(&hello); //append lamda thread.append ( [&nsleep]() { std::this_thread::sleep_for(std::chrono::milliseconds(rand()%900+100)); std::cout<<"I'm a lamda runing in a thread"<<std::endl; } ); //append object method with copy-constructor(value-assignment) thread.append(std::bind(&A::foo,a,10)); thread.append(std::bind(&A::foo,b,11)); thread.append(std::bind(&A::foo,c,12)); thread.append(std::bind(&A::foo,a,100)); //append object method with address assignment, will cause the objects' member increase. thread.append(std::bind(&A::foo,&a,10)); thread.append(std::bind(&A::foo,&b,11)); thread.append(std::bind(&A::foo,&c,12)); thread.append(std::bind(&A::foo,&a,100)); //wait for all tasks done. thread.wait_for_idle(); //kill thread.terminate(); //wait for killed thread.join(); //test function std::function < void (void) > func1 = &hello; std::function < void (void) > func2 = &hello; if (func1.target<void (void) >()!=func2.target<void (void)>()) return 0; else return 1; }