关于Group Commit网上的资料其实已经足够多了,我这里只简单的介绍一下。
众所周知,在MySQL5.6之前的版本,由于引入了Binlog/InnoDB的XA,Binlog的写入和InnoDB commit完全串行化执行,大概的执行序列如下:
当sync_binlog=1时,很明显上述的第二步会成为瓶颈,而且还是持有全局大锁,这也是为什么性能会急剧下降。
很快Mariadb就提出了一个Binlog Group Commit方案,即在准备写入Binlog时,维持一个队列,最早进入队列的是leader,后来的是follower,leader为搜集到的队列中的线程依次写Binlog文件, 并commit事务。Percona 的Group Commit实现也是Port自Mariadb。不过仍在使用Percona Server5.5的朋友需要注意,该Group Commit实现可能破坏掉Semisync的行为,感兴趣的点击 bug#1254571
Oracle MySQL 在5.6版本开始也支持Binlog Group Commit,使用了和Mariadb类似的思路,但将Group Commit的过程拆分成了三个阶段:flush stage 将各个线程的binlog从cache写到文件中; sync stage 对binlog做fsync操作(如果需要的话);commit stage 为各个线程做引擎层的事务commit。每个stage同时只有一个线程在操作。
Tips:当引入Group Commit后,sync_binlog的含义就变了,假定设为1000,表示的不是1000个事务后做一次fsync,而是1000个事务组。
Oracle MySQL的实现的优势在于三个阶段可以并发执行,从而提升效率。
XA Recover
在Binlog打开的情况下,MySQL默认使用MySQL_BIN_LOG来做XA协调者,大致流程为:
1.扫描最后一个Binlog文件,提取其中的xid;
2.InnoDB维持了状态为Prepare的事务链表,将这些事务的xid和Binlog中记录的xid做比较,如果在Binlog中存在,则提交,否则回滚事务。
通过这种方式,可以让InnoDB和Binlog中的事务状态保持一致。显然只要事务在InnoDB层完成了Prepare,并且写入了Binlog,就可以从崩溃中恢复事务,这意味着我们无需在InnoDB commit时显式的write/fsync redo log。
Tips:MySQL为何只需要扫描最后一个Binlog文件呢 ? 原因是每次在rotate到新的Binlog文件时,总是保证没有正在提交的事务,然后fsync一次InnoDB的redo log。这样就可以保证老的Binlog文件中的事务在InnoDB总是提交的。
问题
其实问题很简单:每个事务都要保证其Prepare的事务被write/fsync到redo log文件。尽管某个事务可能会帮助其他事务完成redo 写入,但这种行为是随机的,并且依然会产生明显的log_sys->mutex开销。
优化
从XA恢复的逻辑我们可以知道,只要保证InnoDB Prepare的redo日志在写Binlog前完成write/sync即可。因此我们对Group Commit的第一个stage的逻辑做了些许修改,大概描述如下:
Step1. InnoDB Prepare,记录当前的LSN到thd中;
Step2. 进入Group Commit的flush stage;Leader搜集队列,同时算出队列中最大的LSN。
Step3. 将InnoDB的redo log write/fsync到指定的LSN
Step4. 写Binlog并进行随后的工作(sync Binlog, InnoDB commit , etc)
通过延迟写redo log的方式,显式的为redo log做了一次组写入,并减少了log_sys->mutex的竞争。
目前官方MySQL已经根据我们report的bug#73202锁提供的思路,对5.7.6的代码进行了优化,对应的Release Note如下:
When using InnoDB with binary logging enabled, concurrent transactions written in the InnoDB redo log are now grouped together before synchronizing to disk when innodb_flush_log_at_trx_commit is set to 1, which reduces the amount of synchronization operations. This can lead to improved performance.
性能数据
简单测试了下,使用sysbench, update_non_index.lua, 100张表,每张10w行记录,innodb_flush_log_at_trx_commit=2, sync_binlog=1000,关闭Gtid
背景
项目的快速迭代开发和在线业务需要保持持续可用的要求,导致MySQL的ddl变成了DBA很头疼的事情,而且经常导致故障发生。本篇介绍RDS分支上做的一个功能改进,DDL fast fail。主要解决:DDL操作因为无法获取MDL排它锁,进入等待队列的时候,阻塞了应用所有的读写请求问题。
MDL锁机制介绍
首先介绍一下MDL(METADATA LOCK)锁机制,MySQL为了保证表结构的完整性和一致性,对表的所有访问都需要获得相应级别的MDL锁,比如以下场景:
session 1: start transaction; select * from test.t1;
session 2: alter table test.t1 add extra int;
session 3: select * from test.t1;
这种场景就是目前因为MDL锁导致的很经典的阻塞问题,如果session1长时间未提交,或者查询持续过长时间,那么后续对t1表的所有读写操作,都被阻塞。 对于在线的业务来说,很容易导致业务中断。
aliyun RDS分支改进
DDL fast fail并没有解决真正DDL过程中的阻塞问题,但避免了因为DDL操作没有获取锁,进而导致业务其他查询/更新语句阻塞的问题。
其实现方式如下:
alter table test.t1 no_wait/wait 1 add extra int;
在ddl语句中,增加了no_wait/wait 1语法支持。
其处理逻辑如下:
首先尝试获取t1表的MDL_EXCLUSIVE级别的MDL锁:
另外,除了alter语句以外,还支持rename,truncate,drop,optimize,create index等ddl操作。
与Oracle的比较
在Oracle 10g的时候,DDL操作经常会遇到这样的错误信息:
ora-00054:resource busy and acquire with nowait specified 即DDL操作无法获取表上面的排它锁,而fast fail。
其实DDL获取排他锁的设计,需要考虑的就是两个问题:
在Oracle 11g的时候,引入了DDL_LOCK_TIMEOUT参数,如果你设置了这个参数,那么DDL操作将使用排队阻塞模式,可以在session和global级别设置, 给了用户更多选择。
背景
MySQL从5.6版本开始支持GTID特性,也就是所谓全局事务ID,在整个复制拓扑结构内,每个事务拥有自己全局唯一标识。GTID包含两个部分,一部分是实例的UUID,另一部分是实例内递增的整数。
GTID的分配包含两种方式,一种是自动分配,另外一种是显式设置session.gtid_next,下面简单介绍下这两种方式:
自动分配
如果没有设置session级别的变量gtid_next,所有事务都走自动分配逻辑。分配GTID发生在GROUP COMMIT的第一个阶段,也就是flush stage,大概可以描述为:
显式设置
用户通过设置session级别变量gtid_next可以显式指定一个GTID,流程如下:
备库SQL线程使用的就是第二种方式,因为备库在apply主库的日志时,要保证GTID是一致的,SQL线程读取到GTID事件后,就根据其中记录的GTID来设置其gtid_next变量。
问题
由于在实例内,GTID需要保证唯一性,因此不管是操作gtid_executed集合和gtid_owned集合,还是分配GTID,都需要加上一个大锁。我们的优化主要集中在第一种GTID分配方式。
对于GTID的分配,由于处于Group Commit的第一个阶段,由该阶段的leader线程为其follower线程分配GTID及刷Binlog,因此不会产生竞争。
而在Step 5,各个线程在完成事务提交后,各自去从gtid_owned集合中删除其使用的gtid。这时候每个线程都需要获取互斥锁,很显然,并发越高,这种竞争就越明显,我们很容易从pt-pmp输出中看到如下类似的trace:
这同时也会影响到GTID的分配阶段,导致TPS在高并发场景下的急剧下降。
解决
实际上对于自动分配GTID的场景,并没有必要维护gtid_owned集合。我们的修改也非常简单,在自动分配一个GTID后,直接加入到gtid_executed集合中,避免维护gtid_owned,这样事务提交时就无需去清理gtid_owned集合了,从而可以完全避免锁竞争。
当然为了保证一致性,如果分配GTID后,写入Binlog文件失败,也需要从gtid_executed集合中删除。不过这种场景非常罕见。
性能数据
使用sysbench,100张表,每张10w行记录,update_non_index.lua,纯内存操作,innodb_flush_log_at_trx_commit = 2,sync_binlog = 1000
从测试结果可以看到,优化前随着并发上升,性能出现下降,而优化后则能保持TPS稳定。
问题重现
先从问题入手,重现下这个 bug
这里我们关闭MySQL,再启动MySQL,然后再插入一条数据
我们看到插入了(2,2),而如果我没有重启,插入同样数据我们得到的应该是(4,2)。 上面的测试反映了MySQLd重启后,InnoDB存储引擎的表自增id可能出现重复利用的情况。
自增id重复利用在某些场景下会出现问题。依然用上面的例子,假设t1有个历史表t1_history用来存t1表的历史数据,那么MySQLd重启前,ti_history中可能已经有了(2,2)这条数据,而重启后我们又插入了(2,2),当新插入的(2,2)迁移到历史表时,会违反主键约束。
原因分析
InnoDB 自增列出现重复值的原因:
建表时可以指定 AUTO_INCREMENT值,不指定时默认为1,这个值表示当前自增列的起始值大小,如果新插入的数据没有指定自增列的值,那么自增列的值即为这个起始值。对于InnoDB表,这个值没有持久到文件中。而是存在内存中(dict_table_struct.autoinc)。那么又问,既然这个值没有持久下来,为什么我们每次插入新的值后, show create table t1看到AUTO_INCREMENT值是跟随变化的。其实show create table t1是直接从dict_table_struct.autoinc取得的(ha_innobase::update_create_info)。
知道了AUTO_INCREMENT是实时存储内存中的。那么,MySQLd 重启后,从哪里得到AUTO_INCREMENT呢? 内存值肯定是丢失了。实际上MySQL采用执行类似select max(id)+1 from t1;方法来得到AUTO_INCREMENT。而这种方法就是造成自增id重复的原因。
MyISAM自增值
MyISAM也有这个问题吗?MyISAM是没有这个问题的。myisam会将这个值实时存储在.MYI文件中(mi_state_info_write)。MySQLd重起后会从.MYI中读取AUTO_INCREMENT值(mi_state_info_read)。因此,MyISAM表重启是不会出现自增id重复的问题。
问题修复
MyISAM选择将AUTO_INCREMENT实时存储在.MYI文件头部中。实际上.MYI头部还会实时存其他信息,也就是说写AUTO_INCREMENT只是个顺带的操作,其性能损耗可以忽略。InnoDB 表如果要解决这个问题,有两种方法。
1)将AUTO_INCREMENT最大值持久到frm文件中。
2)将 AUTO_INCREMENT最大值持久到聚集索引根页trx_id所在的位置。
第一种方法直接写文件性能消耗较大,这是一额外的操作,而不是一个顺带的操作。我们采用第二种方案。为什么选择存储在聚集索引根页页头trx_id,页头中存储trx_id,只对二级索引页和insert buf 页头有效(MVCC)。而聚集索引根页页头trx_id这个值是没有使用的,始终保持初始值0。正好这个位置8个字节可存放自增值的值。我们每次更新AUTO_INCREMENT值时,同时将这个值修改到聚集索引根页页头trx_id的位置。 这个写操作跟真正的数据写操作一样,遵守write-ahead log原则,只不过这里只需要redo log ,而不需要undo log。因为我们不需要回滚AUTO_INCREMENT的变化(即回滚后自增列值会保留,即使insert 回滚了,AUTO_INCREMENT值不会回滚)。
因此,AUTO_INCREMENT值存储在聚集索引根页trx_id所在的位置,实际上是对内存根页的修改和多了一条redo log(量很小),而这个redo log 的写入也是异步的,可以说是原有事务log的一个顺带操作。因此AUTO_INCREMENT值存储在聚集索引根页这个性能损耗是极小的。
修复后的性能对比,我们新增了全局参数innodb_autoinc_persistent 取值on/off; on 表示将AUTO_INCREMENT值实时存储在聚集索引根页。off则采用原有方式只存储在内存。
可以看出性能损耗在%1以下。
改进
新增参数innodb_autoinc_persistent_interval 用于控制持久化AUTO_INCREMENT值的频率。例如:innodb_autoinc_persistent_interval=100,auto_incrememt_increment=1时,即每100次insert会控制持久化一次AUTO_INCREMENT值。每次持久的值为:当前值+innodb_autoinc_persistent_interval。
测试结论
innodb_autoinc_persistent=ON, innodb_autoinc_persistent_interval=1时性能损耗在%1以下。
innodb_autoinc_persistent=ON, innodb_autoinc_persistent_interval=100时性能损耗可以忽略。
限制
注意:如果我们使用需要开启innodb_autoinc_persistent,应该在参数文件中指定
如果这样指定set global innodb_autoinc_persistent=on;重启后将不会从聚集索引根页读取AUTO_INCREMENT最大值。
疑问:对于InnoDB表,重启通过select max(id)+1 from t1得到AUTO_INCREMENT值,如果id上有索引那么这个语句使用索引查找就很快。那么,这个可以解释MySQL 为什么要求自增列必须包含在索引中的原因。 如果没有指定索引,则报如下错误,
ERROR 1075 (42000): Incorrect table definition; there can be only one auto column and it must be defined as a key 而myisam表竟然也有这个要求,感觉是多余的。
前言
与oracle 不同,MySQL 的主库与备库的同步是通过 binlog 实现的,而redo日志只做为MySQL 实例的crash recovery使用。MySQL在4.x 的时候放弃redo 的同步策略而引入 binlog的同步,一个重要原因是为了兼容其它非事务存储引擎,否则主备同步是没有办法进行的。
redo 日志同步属于物理同步方法,简单直接,将修改的物理部分传送到备库执行,主备共用一致的 LSN,只要保证 LSN 相同即可,同一时刻,只能主库或备库一方接受写请求; binlog的同步方法属于逻辑复制,分为statement 或 row 模式,其中statement记录的是SQL语句,Row 模式记录的是修改之前的记录与修改之后的记录,即前镜像与后镜像;备库通过binlog dump 协议拉取binlog,然后在备库执行。如果拉取的binlog是SQL语句,备库会走和主库相同的逻辑,如果是row 格式,则会调用存储引擎来执行相应的修改。
本文简单说明5.5到5.7的主备复制性能改进过程。
replication improvement (from 5.5 to 5.7)
(1) 5.5 中,binlog的同步是由两个线程执行的
io_thread: 根据binlog dump协议从主库拉取binlog, 并将binlog转存到本地的relaylog;
sql_thread: 读取relaylog,根据位点的先后顺序执行binlog event,进而将主库的修改同步到备库,达到主备一致的效果; 由于在主库的更新是由多个客户端执行的,所以当压力达到一定的程度时,备库单线程执行主库的binlog跟不上主库执行的速度,进而会产生延迟造成备库不可用,这也是分库的原因之一,其SQL线程的执行堆栈如下:
(2) 5.6 中,引入了多线程模式,在多线程模式下,其线程结构如下
io_thread: 同5.5
Coordinator_thread: 负责读取 relay log,将读取的binlog event以事务为单位分发到各个 worker thread 进行执行,并在必要时执行binlog event(Description_format_log_event, Rotate_log_event 等)。
worker_thread: 执行分配到的binlog event,各个线程之间互不影响;
多线程原理
sql_thread 的分发原理是依据当前事务所操作的数据库名称来进行分发,如果事务是跨数据库行为的,则需要等待已分配的该数据库的事务全部执行完毕,才会继续分发,其分配行为的伪码可以简单的描述如下:
需要注意的细节
总体上说,5.6 的并行复制打破了5.5 单线程的复制的行为,只是在单库下用处不大,并且5.6的并行复制的改动引入了一些重量级的bug
(3) 5.7中,并行复制的实现添加了另外一种并行的方式,即主库在 ordered_commit中的第二阶段的时候,将同一批commit的 binlog 打上一个相同的seqno标签,同一时间戳的事务在备库是可以同时执行的,因此大大简化了并行复制的逻辑,并打破了相同 DB 不能并行执行的限制。备库在执行时,具有同一seqno的事务在备库可以并行的执行,互不干扰,也不需要绑定信息,后一批seqno的事务需要等待前一批相同seqno的事务执行完后才可以执行。
详细实现可参考: http://bazaar.launchpad.net/~MySQL/MySQL-server/5.7/revision/6256 。
reference: http://geek.rohitkalhans.com/2013/09/enhancedMTS-deepdive.html
本文说明一个物理升级导致的 "数据丢失"。
现象
在MySQL 5.1下新建key分表,可以正确查询数据。
而直接用MySQL5.5或MySQL5.6启动上面的5.1实例,发现(1,1785089517)这行数据不能正确查询出来。
原因分析
跟踪代码发现,5.1 与5.5,5.6 key hash算法是有区别的。
5.1 对于非空值的处理算法如下
通过此算法算出数据(1,1785089517)在第3个分区
5.5和5.6非空值的处理算法如下
通过此算法算出数据(1,1785089517)在第5个分区,因此,5.5,5.6查询不能查询出此行数据。
5.1,5.5,5.6对于空值的算法还是一致的,如下
都能正确算出数据(2, null)在第3个分区。因此,空值可以正确查询出来。
那么是什么导致非空值的hash算法走了不同路径呢?在5.1下,计算字段key hash固定字符集就是my_charset_bin,对应的hash 函数就是前面的my_hash_sort_simple。而在5.5,5.6下,计算字段key hash的字符集是随字段变化的,字段c2类型为int对应my_charset_numeric,与之对应的hash函数为my_hash_sort_simple。具体可以参考函数Field::hash
那么问题又来了,5.5后为什么算法会变化呢?原因在于官方关于字符集策略的调整,详见WL#2649 。
兼容处理
前面讲到,由于hash 算法变化,用5.5,5.6启动5.1的实例,导致不能正确查询数据。那么5.1升级5.5,5.6就必须兼容这个问题.MySQL 5.5.31以后,提供了专门的语法 ALTER TABLE ... PARTITION BY ALGORITHM=1 [LINEAR] KEY ... 用于兼容此问题。对于上面的例子,用5.5或5.6启动5.1的实例后执行
数据可以正确查询出来了。
而实际上5.5,5.6的MySQL_upgrade升级程序已经提供了兼容方法。MySQL_upgrade 执行check table xxx for upgrade 会检查key分区表是否用了老的算法。如果使用了老的算法,会返回
检查到错误信息后会自动执行以下语句进行兼容。
背景
客户使用MySQLdump导出一张表,然后使用MySQL -e 'source test.dmp'的过程中client进程crash,爆出内存的segment fault错误,导致无法导入数据。
问题定位
test.dmp文件大概50G左右,查看了一下文件的前几行内容,发现:
问题定位到第一行出现了不正常warning的信息,是由于客户使用MySQLdump命令的时候,重定向了stderr。即:
MySQLdump ...>/test.dmp 2>&1
导致error或者warning信息都重定向到了test.dmp, 最终导致失败。
问题引申
问题虽然定位到了,但却有几个问题没有弄清楚:
问题1. 不正常的sql,执行失败,报错出来就可以了,为什么会导致crash?
MySQL.cc::add_line函数中,在读第一行的时候,读取到了don't,发现有一个单引号,所以程序死命的去找匹配的另外一个单引号,导致不断的读取文件,分配内存,直到crash。
假设没有这个单引号,MySQL读到第六行,发现;号,就会执行sql,并正常的报错退出。
问题2. 那代码中对于大小的边界到底是多少?比如insert语句支持batch insert时,语句的长度多少,又比如遇到clob字段呢?
所以,正常情况下,max_allowed_packet现在的最大字段长度和MAX_BATCH_BUFFER_SIZE限制的最大insert语句,是匹配的。
RDS问题修复原则
从问题的定位上来看,这一例crash属于客户错误使用MySQLdump导致的问题,Aliyun RDS分支对内存导致的crash问题,都会定位并反馈给用户。 但此例不做修复,而是引导用户正确的使用MySQLdump工具。
bug描述
Oracle 最新发布的版本 5.6.22 中有这样一个关于GTID的bugfix,在主备场景下,如果我们在主库上 SET GLOBAL GTID_PURGED = "some_gtid_set",并且 some_gtid_set 中包含了备库还没复制的事务,这个时候如果备库接上主库的话,预期结果是主库返回错误,IO线程挂掉的,但是实际上,在这种场景下主库并不报错,只是默默的把自己 binlog 中包含的gtid事务发给备库。这个bug的造成的结果是看起来复制正常,没有错误,但实际上备库已经丢事务了,主备很可能就不一致了。
背景知识
binlog 中记录的和GTID相关的事件主要有2种,Previous_gtids_log_event 和 Gtid_log_event,前者表示之前的binlog中包含的gtid的集合,后者就是一个gtid,对应一个事务。一个 binlog 文件中只有一个 Previous_gtids_log_event,放在开头,有多个 Gtid_log_event,如下面所示
我们知道备库的复制线程是分IO线程和SQL线程2种的,IO线程通过GTID协议或者文件位置协议拉取主库的binlog,然后记录在自己的relay log中;SQL线程通过执行realy log中的事件,把其中的操作都自己做一遍,记入本地binlog。在GTID协议下,备库向主库发送拉取请求的时候,会告知主库自己已经有的所有的GTID的集合,Retrieved_Gtid_Set + Executed_Gtid_Set,前者对应 realy log 中所有的gtid集合,表示已经拉取过的,后者对应binlog中记录有的,表示已经执行过的;主库在收到这2个总集合后,会扫描自己的binlog,找到合适的binlog然后开始发送。
主库将备库发送过来的总合集记为 slave_gtid_executed,然后调用 find_first_log_not_in_gtid_set(slave_gtid_executed),这个函数的目的是从最新到最老扫描binlog文件,找到第一个含有不存在 slave_gtid_executed 这个集合的gtid的binlog。在这个扫描过程中并不需要从头到尾读binlog中所有的gtid,只需要读出 Previous_gtids_log_event ,如果Previous_gtids_log_event 不是 slave_gtid_executed的子集,就继续向前找binlog,直到找到为止。
这个查找过程总会停止的,停止条件如下:
- 找到了这样的binlog,其Previous_gtids_log_event 是slave_gtid_executed子集
- 在往前读binlog的时候,发现没有binlog文件了(如被purge了),但是还没找到满足条件的Previous_gtids_log_event,这个时候主库报错
- 一直往前找,发现Previous_gtids_log_event 是空集
在条件2下,报错信息是这样的
Got fatal error 1236 from master when reading data from binary log: 'The slave is connecting using CHANGE MASTER TO MASTER_AUTO_POSITION = 1, but the master has purged binary logs containing GTIDs that the slave requires.
其实上面的条件3是条件1的特殊情况,这个bugfix针对的场景就是条件3这种,但并不是所有的符合条件3的场景都会触发这个bug,下面就分析下什么情况下才会触发bug。
bug 分析
假设有这样的场景,我们要用已经有MySQL实例的备份重新做一对主备实例,不管是用 xtrabackup 这种物理备份工具或者MySQLdump这种逻辑备份工具,都会有2步操作,
- 导入数据
- SET GLOBAL GTID_PURGED ="xxxx"
步骤2是为了保证GTID的完备性,因为新实例已经导入了数据,就需要把生成这些数据的事务对应的GTID集合也设置进来。
正常的操作是主备都要做这2步的,如果我们只在主库上做了这2步,备库什么也不做,然后就直接用 GTID 协议把备库连上来,按照我们的预期这个时候是应该出错的,主备不一致,并且主库的binlog中没东西,应该报之前停止条件2报的错。但是令人大跌眼镜的是主库不报错,复制看起来是完全正常的。
为啥会这样呢,SET GLOBAL GTID_PURGED 操作会调用 MySQL_bin_log.rotate_and_purge切换到一个新的binlog,并把这个GTID_PURGED 集合记入新生成的binlog的Previous_gtids_log_event,假设原有的binlog为A,新生成的为B,主库刚启动,所以A就是主库的第一个binlog,它之前啥也没有,A的Previous_gtids_log_event就是空集,并且A中也不包含任何GTID事件,否则SET GLOBAL GTID_PURGED是做不了的。按照之前的扫描逻辑,扫到A是肯定会停下来的,并且不报错。
bug 修复
官方的修复就是在主库扫描查找binlog之前,判断一下 gtid_purged 集合不是不比slave_gtid_executed大,如果是就报错,错误信息和条件2一样 Got fatal error 1236 from master when reading data from binary log: 'The slave is connecting using CHANGE MASTER TO MASTER_AUTO_POSITION = 1, but the master has purged binary logs containing GTIDs that the slave requires。
问题描述
当单个 MySQL 实例的数据增长到很多的时候,就会考虑通过库或者表级别的拆分,把当前实例的数据分散到多个实例上去,假设原实例为A,想把其中的5个库(db1/db2/db3/db4/db5)拆分到5个实例(B1/B2/B3/B4/B5)上去。
拆分过程一般会这样做,先把A的相应库的数据导出,然后导入到对应的B实例上,但是在这个导出导入过程中,A库的数据还是在持续更新的,所以还需在导入完后,在所有的B实例和A实例间建立复制关系,拉取缺失的数据,在业务不繁忙的时候将业务切换到各个B实例。
在复制搭建时,每个B实例只需要复制A实例上的一个库,所以只需要重放对应库的binlog即可,这个通过 replicate-do-db 来设置过滤条件。如果我们用备库上执行 show slave status\G 会看到Executed_Gtid_Set是断断续续的,间断非常多,导致这一列很长很长,看到的直接效果就是被刷屏了。
为啥会这样呢,因为设了replicate-do-db,就只会执行对应db对应的event,其它db的都不执行。主库的执行是不分db的,对各个db的操作互相间隔,记录在binlog中,所以备库做了过滤后,就出现这种断断的现象。
除了这个看着不舒服外,还会导致其它问题么?
假设我们拿B1实例的备份做了一个新实例,然后接到A上,如果主库A又定期purge了老的binlog,那么新实例的IO线程就会出错,因为需要的binlog在主库上找不到了;即使主库没有purge 老的binlog,新实例还要把主库的binlog都从头重新拉过来,然后执行的时候又都过滤掉,不如不拉取。
有没有好的办法解决这个问题呢?SQL线程在执行的时候,发现是该被过滤掉的event,在不执行的同时,记一个空事务就好了,把原事务对应的GTID位置占住,记入binlog,这样备库的Executed_Gtid_Set就是连续的了。
bug 修复
对这个问题,官方有一个相应的bugfix,参见 revno: 5860 ,有了这个patch后,备库B1的 SQL 线程在遇到和 db2-db5 相关的SQL语句时,在binlog中把对应的GTID记下,同时对应记一个空事务。
这个 patch 只是针对Query_log_event,即 statement 格式的 binlog event,那么row格式的呢? row格式原来就已经是这种行为,通过check_table_map 函数来过滤库或者表,然后生成一个空事务。
另外这个patch还专门处理了下 CREATE/DROP TEMPORARY TABLE 这2种语句,我们知道row格式下,对临时表的操作是不会记入binlog的。如果主库的binlog格式是 statement,备库用的是 row,CREATE/DROP TEMPORARY TABLE 对应的事务传到备库后,就会消失掉,Executed_Gtid_Set集合看起来是不连续的,但是主库的binlog记的gtid是连续的,这个 patch 让这种情况下的CREATE/DROP TEMPORARY TABLE在备库同样记为一个空事务。
来自一个TokuDB用户的“投诉”:
https://mariadb.atlassian.net/browse/MDEV-6207
现象大概是:
用户有一个MyISAM的表test_table:
转成TokuDB引擎后表大小为92M左右:
执行"OPTIMIZE TABLE test_table":
再次执行"OPTIMIZE TABLE test_table":
继续执行:
基本稳定在这个大小。
主索引从47M-->63M-->79M,执行"OPTIMIZE TABLE"后为什么会越来越大?
这得从TokuDB的索引文件分配方式说起,当内存中的脏页需要写到磁盘时,TokuDB优先在文件末尾分配空间并写入,而不是“覆写”原块,原来的块暂时成了“碎片”。
这样问题就来了,索引文件岂不是越来越大?No, TokuDB会把这些“碎片”在checkpoint时加入到回收列表,以供后面的写操作使用,看似79M的文件其实还可以装不少数据呢!
嗯,这个现象解释通了,但还有2个问题:
- 在执行这个语句的时候,TokuDB到底在做什么呢? 在做toku_ft_flush_some_child,把内节点的缓冲区(message buffer)数据刷到最底层的叶节点。
- 在TokuDB里,OPTIMIZE TABLE有用吗? 作用非常小,不建议使用,TokuDB是一个"No Fragmentation"的引擎。
本文转载自MySQL.taobao.org ,感谢淘宝数据库项目组丁奇、鸣嵩、彭立勋、皓庭、项仲、剑川、武藏、祁奚、褚霸、一工。审校:刘亚琼