uC/OS-II源码分析

首先从main函数开始,下面是uC/OS-II main函数的大致流程:
main(){
 OSInit();
 TaskCreate(...);
 OSStart();
}
首先是调用OSInit进行初始化,然后使用TaskCreate创建几个进程/Task,最后调用OSStart,操作系统就开始运行了。
 
OSInit
 
最先看看OSInit完成哪些初始化:
void  OSInit (void)
{
#if OS_VERSION >= 204
    OSInitHookBegin();                                           /* Call port specific initialization code   */
#endif
    OS_InitMisc();                                               /* Initialize miscellaneous variables       */
    OS_InitRdyList();                                            /* Initialize the Ready List                */
    OS_InitTCBList();                                            /* Initialize the free list of OS_TCBs      */
    OS_InitEventList();                                          /* Initialize the free list of OS_EVENTs    */
#if (OS_VERSION >= 251) && (OS_FLAG_EN > 0) && (OS_MAX_FLAGS > 0)
    OS_FlagInit();                                               /* Initialize the event flag structures     */
#endif
#if (OS_MEM_EN > 0) && (OS_MAX_MEM_PART > 0)
    OS_MemInit();                                                /* Initialize the memory manager            */
#endif
#if (OS_Q_EN > 0) && (OS_MAX_QS > 0)
    OS_QInit();                                                  /* Initialize the message queue structures  */
#endif
    OS_InitTaskIdle();                                           /* Create the Idle Task                     */
#if OS_TASK_STAT_EN > 0
    OS_InitTaskStat();                                           /* Create the Statistic Task                */
#endif
#if OS_VERSION >= 204
    OSInitHookEnd();                                             /* Call port specific init. code            */
#endif
#if OS_VERSION >= 270 && OS_DEBUG_EN > 0
    OSDebugInit();
#endif
}
OS_InitMisc()完成的是一些其其他他的变量的初始化:
    OSIntNesting  = 0;                                     /* Clear the interrupt nesting counter      */
    OSLockNesting = 0;                                     /* Clear the scheduling lock counter        */
    OSTaskCtr     = 0;                                     /* Clear the number of tasks                */
    OSRunning     = FALSE;                                 /* Indicate that multitasking not started   */
    
    OSCtxSwCtr    = 0;                                     /* Clear the context switch counter         */
    OSIdleCtr     = 0L;                                    /* Clear the 32-bit idle counter            */
其中包括:中断嵌套标志OSIntNesting,调度锁定标志OSLockNesting,OS标志OSRunning等。OSRunning在这里设置为FALSE,在后面OSStartHighRdy中会被设置为TRUE表示OS开始工作。
OS_InitRdyList()初始化就绪Task列表:
static  void  OS_InitRdyList (void)
{
    INT8U    i;
    INT8U   *prdytbl;

    OSRdyGrp      = 0x00;                                  /* Clear the ready list                     */
    prdytbl       = &OSRdyTbl[0];
    for (i = 0; i < OS_RDY_TBL_SIZE; i++) {
        *prdytbl++ = 0x00;
    }
    OSPrioCur     = 0;
    OSPrioHighRdy = 0;
    OSTCBHighRdy  = (OS_TCB *)0;                                 
    OSTCBCur      = (OS_TCB *)0;
}
首先将OSRdyTbl[]数组中全部初始化0,同时将OSPrioCur/OSTCBCur初始化为0,OSPrioHighRdy/OSTCBHighRdy也初始化为0,这几个变量将在第一个OSSchedule中被赋予正确的值。
OS_InitTCBList()这个函数看名称我们就知道是初始化TCB列表。
static  void  OS_InitTCBList (void)
{
    INT8U    i;
    OS_TCB  *ptcb1;
    OS_TCB  *ptcb2;

    OS_MemClr((INT8U *)&OSTCBTbl[0],     sizeof(OSTCBTbl));      /* Clear all the TCBs                 */
    OS_MemClr((INT8U *)&OSTCBPrioTbl[0], sizeof(OSTCBPrioTbl));  /* Clear the priority table           */
    ptcb1 = &OSTCBTbl[0];
    ptcb2 = &OSTCBTbl[1];
    for (i = 0; i < (OS_MAX_TASKS + OS_N_SYS_TASKS - 1); i++) {  /* Init. list of free TCBs            */
        ptcb1->OSTCBNext = ptcb2;
#if OS_TASK_NAME_SIZE > 1
        ptcb1->OSTCBTaskName[0] = '?';                           /* Unknown name                       */
        ptcb1->OSTCBTaskName[1] = OS_ASCII_NUL;
#endif
        ptcb1++;
        ptcb2++;
    }
    ptcb1->OSTCBNext = (OS_TCB *)0;                              /* Last OS_TCB                        */
#if OS_TASK_NAME_SIZE > 1
    ptcb1->OSTCBTaskName[0] = '?';                               /* Unknown name                       */
    ptcb1->OSTCBTaskName[1] = OS_ASCII_NUL;
#endif
    OSTCBList               = (OS_TCB *)0;                       /* TCB lists initializations          */
    OSTCBFreeList           = &OSTCBTbl[0];
}
这里完成的工作很简单,首先把整个数组使用OSTCBNext指针连接成链表链起来,然后将OSTCBList初始化为0,也就是还没有TCB,因为还没有Task产生,OSTCBFreeList指向OSTCBTbl[]数组的第一个表示所有TCB都处于Free状态。
OS_InitEventList()初始化Event列表。
static  void  OS_InitEventList (void)
{
#if OS_EVENT_EN && (OS_MAX_EVENTS > 0)
#if (OS_MAX_EVENTS > 1)
    INT16U     i;
    OS_EVENT  *pevent1;
    OS_EVENT  *pevent2;

    OS_MemClr((INT8U *)&OSEventTbl[0], sizeof(OSEventTbl)); /* Clear the event table                   */
    pevent1 = &OSEventTbl[0];
    pevent2 = &OSEventTbl[1];
    for (i = 0; i < (OS_MAX_EVENTS - 1); i++) {             /* Init. list of free EVENT control blocks */
        pevent1->OSEventType    = OS_EVENT_TYPE_UNUSED;
        pevent1->OSEventPtr     = pevent2;
#if OS_EVENT_NAME_SIZE > 1
        pevent1->OSEventName[0] = '?';                      /* Unknown name                            */
        pevent1->OSEventName[1] = OS_ASCII_NUL;
#endif
        pevent1++;
        pevent2++;
    }
    pevent1->OSEventType            = OS_EVENT_TYPE_UNUSED;
    pevent1->OSEventPtr             = (OS_EVENT *)0;
#if OS_EVENT_NAME_SIZE > 1
    pevent1->OSEventName[0]         = '?';                  
    pevent1->OSEventName[1]         = OS_ASCII_NUL;
#endif
    OSEventFreeList                 = &OSEventTbl[0];
#else
    OSEventFreeList                 = &OSEventTbl[0];       /* Only have ONE event control block       */
    OSEventFreeList->OSEventType    = OS_EVENT_TYPE_UNUSED;
    OSEventFreeList->OSEventPtr     = (OS_EVENT *)0;
#if OS_EVENT_NAME_SIZE > 1
    OSEventFreeList->OSEventName[0] = '?';                  /* Unknown name                            */
    OSEventFreeList->OSEventName[1] = OS_ASCII_NUL;
#endif
#endif
#endif
}
同样将EventTbl[]数组中的OSEventType都初始化为OS_EVENT_TYPE_UNUSED。
OS_InitTaskIdle(),中间我们跳过其他的如Mem等的初始化,看看Idle Task的初始化。
    (void)OSTaskCreateExt(OS_TaskIdle,
                          (void *)0,                                 /* No arguments passed to OS_TaskIdle() */
                          &OSTaskIdleStk[OS_TASK_IDLE_STK_SIZE - 1], /* Set Top-Of-Stack                     */
                          OS_IDLE_PRIO,                              /* Lowest priority level                */
                          OS_TASK_IDLE_ID,
                          &OSTaskIdleStk[0],                         /* Set Bottom-Of-Stack                  */
                          OS_TASK_IDLE_STK_SIZE,
                          (void *)0,                                 /* No TCB extension                     */
                          OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);/* Enable stack checking + clear stack  */
其实Idle Task的初始化很简单就是调用OSTaskCrete系列的函数创建一个Task, OSTaskCreate我们后面再做进一步分析。
初始化State Task也是类似调用OSTaskCreate系列函数创建Stat Task。这里只是创建了该Task的各个结构还没有真正运行该Task,直到OSStart中才依据优先级调度运行。
OK,到这里OSInit算高一个段落了,我们接着回到main往下看。
 
OSTaskCreate
 
OSTaskCreate负责创建Task所需的数据结构,该函数原形如下所示:
INT8U  OSTaskCreate (void (*task)(void *pd), void *p_arg, OS_STK *ptos, INT8U prio)
其中task是一个函数指针,指向该Task所开始的函数,当这个Task第一次被调度运行时将会从task处开始运行。
p_arg是传给task的参数指针;
ptos是堆栈指针,指向栈顶(堆栈从上往下)或栈底(堆栈从下往上);
prio是进程的优先级,uC/OS-II共支持最大64个优先级,其中最低的两个优先级给Idle和Stat进程,并且各个Task的优先级必须不同。
接下来,我们看看这个函数的执行流程:
#if OS_ARG_CHK_EN > 0
    if (prio > OS_LOWEST_PRIO) {             /* Make sure priority is within allowable range           */
        return (OS_PRIO_INVALID);
    }
#endif
    OS_ENTER_CRITICAL();
    if (OSIntNesting > 0) {                  /* Make sure we don't create the task from within an ISR  */
        OS_EXIT_CRITICAL();
        return (OS_ERR_TASK_CREATE_ISR);
    }
    if (OSTCBPrioTbl[prio] == (OS_TCB *)0) { /* Make sure task doesn't already exist at this priority  */
        OSTCBPrioTbl[prio] = (OS_TCB *)1;    /* Reserve the priority to prevent others from doing ...  */
                                             /* ... the same thing until task is created.              */
        OS_EXIT_CRITICAL();
        psp = (OS_STK *)OSTaskStkInit(task, p_arg, ptos, 0);    /* Initialize the task's stack         */
        err = OS_TCBInit(prio, psp, (OS_STK *)0, 0, 0, (void *)0, 0);
        if (err == OS_NO_ERR) {
            if (OSRunning == TRUE) {         /* Find highest priority task if multitasking has started */
                OS_Sched();
            }
        } else {
            OS_ENTER_CRITICAL();
            OSTCBPrioTbl[prio] = (OS_TCB *)0;/* Make this priority available to others                 */
            OS_EXIT_CRITICAL();
        }
        return (err);
    }
    OS_EXIT_CRITICAL();
    return (OS_PRIO_EXIST);
OS_LOWEST_PRIO在ucos-ii.h中被定义为63,表示Task的优先级从0到63,共64级。首先判断prio是否超过最低优先级,如果是,则返回OS_PRIO_INVALID错误。
然后调用OS_ENTER_CRITICAL(),进入临界段,在临界段中的代码执行不允许被中断。这个宏是用户自定义的,一般是进行关中断操作,例如在x86中的CLI等。这个宏和OS_EXIT_CRITICAL()相对应,这个宏表示离开临界段。
OSTaskCreate不允许在中断中调用,因此会判断OSIntNesting是否大于0,如果大于0,表示正在中断嵌套,返回OS_ERR_TASK_CREATE_ISR错误。
接着判断该prio是否已经有Task存在,由于uC/OS-II只支持每一个优先级一个Task,因此如果该prio已经有进程存在,OSTaskCreate会返回OS_PRIO_EXIST错误。
相反,如果该prio先前没有Task存在,则将OSTCBPrioTbl[prio]置1,表示该prio已被占用,然后调用OSTaskStkInit初始化堆栈,调用OS_TCBInit初始化TCB,如果OSRunning为TRUE表示OS正在运行,则调用OS_Sched进行进程调度;否则返回。
下面来看看OSTaskStkInit和OS_TCBInit这两个函数。

OSTaskStkInit是一个用户自定义的函数,因为uC/OS-II在设计时无法知道当前处理器在进行进程调度时需要保存那些信息,OSTaskStkInit就是初始化堆栈,让Task看起来就好像刚刚进入中断并保存好寄存器的值一样,当OS_Sched调度到该Task时,只需切换到该堆栈中,将寄存器值Pop出来,然后执行一个中断返回指令IRET即可。
OSTaskStkInit的原型如下:
OS_STK *OSTaskStkInit (void (*task)(void *pd), void *pdata, OS_STK *ptos, INT16U opt)
和OSTaskCreate类似,task是进程入口地址,pdata是参数地址,ptos是堆栈指针,而opt只是作为一个预留的参数Option而保留。返回的是调整以后的堆栈指针。
在OSTaskStkInit中,一般是将pdata入栈,flag入栈,task入栈,然后将各寄存器依次入栈。
OS_TCBInit初始化TCB数据结构,下面只提取主要部分来看:
INT8U  OS_TCBInit (INT8U prio, OS_STK *ptos, OS_STK *pbos, INT16U id, INT32U stk_size, void *pext, INT16U opt)
{
    OS_TCB    *ptcb;
   
    OS_ENTER_CRITICAL();
    ptcb = OSTCBFreeList;                                  /* Get a free TCB from the free TCB list    */
    if (ptcb != (OS_TCB *)0) {
        OSTCBFreeList        = ptcb->OSTCBNext;            /* Update pointer to free TCB list          */
        OS_EXIT_CRITICAL();
        ptcb->OSTCBStkPtr    = ptos;                       /* Load Stack pointer in TCB                */
        ptcb->OSTCBPrio      = prio;                       /* Load task priority into TCB              */
        ptcb->OSTCBStat      = OS_STAT_RDY;                /* Task is ready to run                     */
        ptcb->OSTCBPendTO    = FALSE;                      /* Clear the Pend timeout flag              */
        ptcb->OSTCBDly       = 0;                          /* Task is not delayed                      */
#if OS_TASK_CREATE_EXT_EN > 0
        ptcb->OSTCBExtPtr    = pext;                       /* Store pointer to TCB extension           */
        ptcb->OSTCBStkSize   = stk_size;                   /* Store stack size                         */
        ptcb->OSTCBStkBottom = pbos;                       /* Store pointer to bottom of stack         */
        ptcb->OSTCBOpt       = opt;                        /* Store task options                       */
        ptcb->OSTCBId        = id;                         /* Store task ID                            */
#else
        pext                 = pext;                       /* Prevent compiler warning if not used     */
        stk_size             = stk_size;
        pbos                 = pbos;
        opt                  = opt;
        id                   = id;
#endif
#if OS_TASK_DEL_EN > 0
        ptcb->OSTCBDelReq    = OS_NO_ERR;
#endif
        ptcb->OSTCBY         = (INT8U)(prio >> 3);         /* Pre-compute X, Y, BitX and BitY          */
        ptcb->OSTCBBitY      = OSMapTbl[ptcb->OSTCBY];
        ptcb->OSTCBX         = (INT8U)(prio & 0x07);
        ptcb->OSTCBBitX      = OSMapTbl[ptcb->OSTCBX];
#if OS_EVENT_EN
        ptcb->OSTCBEventPtr  = (OS_EVENT *)0;              /* Task is not pending on an event          */
#endif
        OSTaskCreateHook(ptcb);                            /* Call user defined hook                   */
        
        OS_ENTER_CRITICAL();
        OSTCBPrioTbl[prio] = ptcb;
        ptcb->OSTCBNext    = OSTCBList;                    /* Link into TCB chain                      */
        ptcb->OSTCBPrev    = (OS_TCB *)0;
        if (OSTCBList != (OS_TCB *)0) {
            OSTCBList->OSTCBPrev = ptcb;
        }
        OSTCBList               = ptcb;
        OSRdyGrp               |= ptcb->OSTCBBitY;         /* Make task ready to run                   */
        OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;
        OSTaskCtr++;                                       /* Increment the #tasks counter             */
        OS_EXIT_CRITICAL();
        return (OS_NO_ERR);
    }
    OS_EXIT_CRITICAL();
    return (OS_NO_MORE_TCB);
}
首先调用OS_ENTER_CRITICAL进入临界段,首先从OSTCBFreeList中拿出一个TCB,如果OSTCBFreeList为空,则返回OS_NO_MORE_TCB错误。
然后调用OS_EXIT_CRITICAL离开临界段,接着对该TCB进行初始化:
 将OSTCBStkPtr初始化为该Task当前堆栈指针;
 OSTCBPrio设置为该Task的prio;
 OSTCBStat设置为OS_STAT_RDY,表示就绪状态;
 OSTCBDly设置为0,当该Task调用OSTimeDly时会初始化这个变量为Delay的时钟数,然后Task转入OS_STAT_状态。这个变量在OSTimeTick中检查,如果大于0表示还需要进行Delay,则进行减1;如果等于零表示无须进行Delay,可以马上运行,转入OS_STAT_RDY状态。
 OSTCBBitY和OSTCBBitX的作用我们在等会专门来讨论。
紧接着就要将该TCB插入OSTCBList列表中,先调用OS_ENTER_CRITICAL进入临界段,将该TCB插入到OSTCBList成为第一个节点,然后调整OSRdyGrp和OSRdyTbl,(这两个变量一会和OSTCBBitX/OSTCBBitY一起讨论),最后将OSTaskCtr计数器加一,调用OS_EXIT_CRITICAL退出临界段。
OSMapTbl和OSUnMapTbl
刚才我们看到TCB数据结构中的OSTCBBitX/OSTCBBitY以及OSRdyGrp/OSRdyTbl的使用,这里专门来讨论讨论这几个变量的用法。
uC/OS-II将64个优先级的进程分为8组,每组8个。刚好可以使用8个INT8U的数据进行表示,于是这就是OSRdyGrp和OSRdyTbl的由来,OSRdyGrp表示组别,从0到7,从前面我们可以看到OSRdyGrp和OSRdyTbl是这么被赋值的:
     OSRdyGrp               |= ptcb->OSTCBBitY;
        OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;
     
 也就是OSTCBBitY保存的是组别,OSTCBBitX保存的是组内的偏移。而这两个变量是这么被初始化的:
     
     ptcb->OSTCBY         = (INT8U)(prio >> 3);
        ptcb->OSTCBBitY      = OSMapTbl[ptcb->OSTCBY];
        ptcb->OSTCBX         = (INT8U)(prio & 0x07);
        ptcb->OSTCBBitX      = OSMapTbl[ptcb->OSTCBX];
 
 由于prio不会大于64,prio为6位值,因此OSTCBY为prio高3位,不会大于8,OSTCBX为prio低3位。
 这里就涉及到OSMapTbl数组和OSUnMapTbl数组的用法了。我们先看看OSMapTbl和OSUnMapTbl的定义:
 INT8U  const  OSMapTbl[8]   = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80};
 
 INT8U  const  OSUnMapTbl[256] = {
     0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x00 to 0x0F                             */
     4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x10 to 0x1F                             */
     5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x20 to 0x2F                             */
     4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x30 to 0x3F                             */
     6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x40 to 0x4F                             */
     4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x50 to 0x5F                             */
     5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x60 to 0x6F                             */
     4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x70 to 0x7F                             */
     7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x80 to 0x8F                             */
     4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0x90 to 0x9F                             */
     5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xA0 to 0xAF                             */
     4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xB0 to 0xBF                             */
     6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xC0 to 0xCF                             */
     4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xD0 to 0xDF                             */
     5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,       /* 0xE0 to 0xEF                             */
     4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0        /* 0xF0 to 0xFF                             */
 };
 OSMapTbl分别是一个INT8U的八个位,而OSUnMap数组中的值就是从0x00到0xFF的八位中,每一个值所对应的最低位的值。我们在调度的时候只需将OSRdyGrp的值代入OSUnMapTbl数组中,得到OSUnMapTbl[OSRdyGrp]的值就是哪个优先级最高的Group有Ready进程存在,再使用该Group对应OSRdyTbl[]数组中的值一样带入OSUnMapTbl中就可以得出哪个Task是优先级最高的。
 于是我们提前来看看OS_Sched()中获取最高优先级所使用的方法:
 y             = OSUnMapTbl[OSRdyGrp];      /* Get pointer to HPT ready to run              */
    OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdyTbl[y]]);
 显然,先得到的y就是存在最高优先级的Group,然后OSUnMapTbl[OSRdyTbl[y]]就是Group中的偏移,因此OSPrioHighRdy最高优先级就应该是Group<<3再加上这个偏移。
 
 于是乎,我们就可以对上面那一小段很模糊的代码做一下总结:
 prio只有6位,高3位代表着某一个Group保存在OSTCBY中,OSTCBBitY表示该Group所对应的Bit,将OSRdyGrp的该位置1表示该Group中有进程是Ready的;低3位代表着该Group中的第几个进程,保存在OSTCBX中,OSTCBBitX表示该进程在该Group中所对应的Bit,OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX就等于将该进程所对应的Bit置1了。
OSStart
OK,接下来我们来看这个开始函数了。OSStart其实很短,只有匆匆几句代码:
void  OSStart (void)
{
    INT8U y;
    INT8U x;

    if (OSRunning == FALSE) {
        y             = OSUnMapTbl[OSRdyGrp];        /* Find highest priority's task priority number   */
        x             = OSUnMapTbl[OSRdyTbl[y]];
        OSPrioHighRdy = (INT8U)((y << 3) + x);
        OSPrioCur     = OSPrioHighRdy;
        OSTCBHighRdy  = OSTCBPrioTbl[OSPrioHighRdy]; /* Point to highest priority task ready to run    */
        OSTCBCur      = OSTCBHighRdy;
        OSStartHighRdy();                            /* Execute target specific code to start task     */
    }
}
如果OSRunning为TRUE,表示OS已经在运行了,则OSStart不做任何事。
OSRunning为FALSE,则找出最高优先级的Ready的Task,并将该指针赋给OSTCBHighRdy和OSTCBCur。然后调用OSStartHighRdy()开始运行该进程。
OSStartHighRdy()为用户自定义函数,在这个函数中,主要功能就是进行堆栈切换并将OSRunning设置为TRUE表示OS已经开始运行,然后将保存的寄存器弹出,最后执行中断返回指令IRET就跳到OSTCBHighRdy的最开始处运行了。
 
OSTimeDly
 
在Task中,一般执行一段时间之后调用OSTimeDly推迟一段时间再继续运行,OSTimeDly将本进程从Ready TCBList中删除,然后将Delay的时间设置给OSTCBDly,最后调用OS_Sched进行进程调度。
void  OSTimeDly (INT16U ticks)
{
    INT8U      y;
   
    if (ticks > 0) {                             /* 0 means no delay!                                  */
        OS_ENTER_CRITICAL();
        y            =  OSTCBCur->OSTCBY;        /* Delay current task                                 */
        OSRdyTbl[y] &= ~OSTCBCur->OSTCBBitX;
        if (OSRdyTbl[y] == 0) {  
            OSRdyGrp &= ~OSTCBCur->OSTCBBitY;
        }
        OSTCBCur->OSTCBDly = ticks;              /* Load ticks in TCB                                  */
        OS_EXIT_CRITICAL();
        OS_Sched();                              /* Find next task to run!                             */
    }
}
如果ticks为零,说明不需延迟,则什么事情都不做。否则,调用OS_ENTER_CRITICAL进入临界段,将本进程从Ready TCBList中删除的代码如下:
        y            =  OSTCBCur->OSTCBY;        /* Delay current task                                 */
        OSRdyTbl[y] &= ~OSTCBCur->OSTCBBitX;
        if (OSRdyTbl[y] == 0) {  
            OSRdyGrp &= ~OSTCBCur->OSTCBBitY;
        }
y为当前进程所在Group,OSRdyTbl[y]为该Group所在字节,&=~则将该字节中本进程所占用的Bit清零。如果OSRdyTbl[y]为0,则说明这个Group中没有进程处于Ready状态,则将OSRdyGrp中该Group所占用的Bit清零。
然后将ticks保存在OSTCBDly中,每次OSTimeTick运行时会将这个值减一直至为零。
调用OS_EXIT_CRITICAL离开临界段,紧接着调用OS_Sched进入调度例程。
 
OS_Sched
 
OS_Sched是进程调度所使用的函数,在这里面找到最高优先级的进程,然后切换到该进程运行。
void  OS_Sched (void)
{
    INT8U      y;
    OS_ENTER_CRITICAL();
    if (OSIntNesting == 0) {                           /* Schedule only if all ISRs done and ...       */
        if (OSLockNesting == 0) {                      /* ... scheduler is not locked                  */
            y             = OSUnMapTbl[OSRdyGrp];      /* Get pointer to HPT ready to run              */
            OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdyTbl[y]]);
            if (OSPrioHighRdy != OSPrioCur) {          /* No Ctx Sw if current task is highest rdy     */
                OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];
                OSCtxSwCtr++;                          /* Increment context switch counter             */
                OS_TASK_SW();                          /* Perform a context switch                     */
            }
        }
    }
    OS_EXIT_CRITICAL();
}
OS_Sched不允许在中断嵌套中调用,因此先判断是否是中断嵌套,并且是否限制进程调度,这两个条件都满足之后,找到最高优先级的进程,如果这个进程不是当前进程,则将新的进程TCB指针保存到OSTCBHighRdy中,为调度计数器OSCtxSwCtr加一,然后调用宏OS_TASK_SW()进行切换。
OS_TASK_SW()宏也是一个自定义的宏,uC/OS-II推荐使用软中断方式实现。
OSCtxSw是一个中断响应函数,一般我们在初始化时将这个软终端和OSCtxSw挂接好。在OSCtxSw中所需要做的事情就是将当前寄存器的值保存到当前堆栈中,然后切换堆栈到新进程的堆栈,将寄存器的值出栈,然后调用中断返回指令IRET就返回到新进程中断前的地方继续执行了。
 
定时中断
 
uC/OS-II的定时中断必须在OSStart之后初始化,而不能在OSStart之前,因为害怕第一个TimeTick发生时第一个进程还没有开始运行,而这时uC/OS是处于不可预期状态,会导致死机。
因此对于定时中断,我一般是放在最高级进程的初始化中进行,然后将定时中断和OSTickISR挂接。
OSTickISR也是一个用户自定义函数,所要完成的功能一个是保存当前的寄存器到当前堆栈将OSIntNesting加一,然后调用uC/OS提供的OSTimeTick函数,然后调用OSIntExit()将OSIntNesting减一,最后将各寄存器值出栈,使用中断返回指令IRET返回。
OSTimeTick在每个时钟中断中被调用一次,在该函数中会更新各个进程TCB所对应的OSTCBDly,如果该OSTCBDly减为0,则对应的TCB就被放入Ready TCBList中。
    OS_ENTER_CRITICAL();                                   /* Update the 32-bit tick counter               */
    OSTime++;
    OS_EXIT_CRITICAL();
    
            ptcb = OSTCBList;                                  /* Point at first TCB in TCB list               */
        while (ptcb->OSTCBPrio != OS_IDLE_PRIO) {          /* Go through all TCBs in TCB list              */
            OS_ENTER_CRITICAL();
            if (ptcb->OSTCBDly != 0) {                     /* No, Delayed or waiting for event with TO     */
                if (--ptcb->OSTCBDly == 0) {               /* Decrement nbr of ticks to end of delay       */
                                                           /* Check for timeout                            */
                    if ((ptcb->OSTCBStat & OS_STAT_PEND_ANY) != OS_STAT_RDY) {
                        ptcb->OSTCBStat   &= ~OS_STAT_PEND_ANY;                /* Yes, Clear status flag   */
                        ptcb->OSTCBPendTO  = TRUE;                             /* Indicate PEND timeout    */
                    } else {
                        ptcb->OSTCBPendTO  = FALSE;
                    }
                    if ((ptcb->OSTCBStat & OS_STAT_SUSPEND) == OS_STAT_RDY) {  /* Is task suspended?       */
                        OSRdyGrp               |= ptcb->OSTCBBitY;             /* No,  Make ready          */
                        OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;
                    }
                }
            }
            ptcb = ptcb->OSTCBNext;                        /* Point at next TCB in TCB list                */
            OS_EXIT_CRITICAL();
        }
首先在临界段将OSTime加一,然后遍历整个非Free的TCBList,如果OSTCBDly不为0,则,将OSTCBDly减一,如果这时OSTCBDly为0,而且TCB对应的进程需要等待任何信号量或Event等,则说明超时时间到了,将当前TCB的State中OS_STAT_PEND_ANY位去掉,然后将OSTCBPendTo设置为TRUE,表示这是PEND的超时,否则设置OSTCBPendTO为FALSE。
如果OSTCBDly减为零,且该进程没有Suspend,则将该进程放入Ready TCBList中,使用方法同TaskCreate中的方法。
然后我们来说说OSIntExit这个函数。该函数代码如下:
void  OSIntExit (void)
{
    INT8U      y;
  
    if (OSRunning == TRUE) {
        OS_ENTER_CRITICAL();
        if (OSIntNesting > 0) {                            /* Prevent OSIntNesting from wrapping       */
            OSIntNesting--;
        }
        if (OSIntNesting == 0) {                           /* Reschedule only if all ISRs complete ... */
            if (OSLockNesting == 0) {                      /* ... and not locked.                      */
  y             = OSUnMapTbl[OSRdyGrp];          
                OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdyTbl[y]]);
                if (OSPrioHighRdy != OSPrioCur) {          /* No Ctx Sw if current task is highest rdy */
                    OSTCBHighRdy  = OSTCBPrioTbl[OSPrioHighRdy];
                    OSCtxSwCtr++;                          /* Keep track of the number of ctx switches */
                    OSIntCtxSw();                          /* Perform interrupt level ctx switch       */
                }
            }
        }
 OS_EXIT_CRITICAL();
    }
}
首先判断OSRunning是否为1,也就是OS是否在运行,当然没有运行就什么都不做。
然后将OSIntNesting减一,这个是需要在临界段进行的。如果OSIntNesting减为零,并且没有限制进程切换,则找到当前最高优先级的进程(方法同OS_Sched()),然后调用OSIntCtxSw进行进程切换。
OSIntCtxSw()是用户自定义函数,该函数的主要功能与OSCtxSw类似,只是需要对当前的堆栈进行稍微的调整,将OSIntExit和OSIntCtxSw调用所需要的堆栈去掉,然后做的和OSCtxSw一样。
在实际的Porting中发现要去掉OSIntExit和OSIntCtxSw调用所占用的堆栈还是比较麻烦的,因此我就现在OSTickISR刚开始的时候保存好现场之后就将堆栈指针赋给当前进程TCB的OSStkPtr,这样,在OSIntCtxSw中就不需要重新对当前堆栈的值进行保存,只需进行切换就可以了。

你可能感兴趣的:(uC/OS-II源码分析)