题意:给定一个数n和包含m个数的数组(保证n<=m),问在m个数中能否找到若干个数使其和为n的倍数。如果能,输出对应的数字在数组中的下标。(2356题意相同,只是输入数组的数字个数等于n,而且需要输出的是数字而非索引)
思路:根据鸽巢原理,必然能够找出这若干个数,而且是连续的若干个数。可以这样考虑,求出数组的前m项和数组,设为sum[1...m],对每个元素去mod n,那么sum数组的值必然在0...n-1之间。因为n<=m,所以要么sum数组中含有0,否则必含有相同的元素(因为有至少n个元素,每个元素有n-1种取法)。如果sum[i]==0,那么说明前i项和是n的倍数。否则假设sum[i]==sum[j],那么说明从第i+1项一直加到第j项是n的倍数。
3370:
#include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <queue> #include <cstdlib> using namespace std; #define INF 0x3fffffff #define clc(s,t) memset(s,t,sizeof(s)) #define N 100005 struct point{ int x,id; }p[N]; int n,m; int cmp(struct point a,struct point b){ if(a.x == b.x) return a.id < b.id; return a.x<b.x; } int main(){ while(scanf("%d %d",&n,&m) && (n+m)){ int i,j; for(i = 1;i<=m;i++){ scanf("%d",&j); j %= n; p[i].x = j; p[i].id = i; } for(i = 2;i<=m;i++) p[i].x = (p[i-1].x+p[i].x)%n; sort(p+1,p+1+m,cmp); for(i = 1;i<=m;i++){ if(p[i].x == 0){ for(j = 1;j<p[i].id;j++) printf("%d ",j); printf("%d\n",p[i].id); break; } if(i>1 && p[i].x == p[i-1].x){ for(j = p[i-1].id+1;j<p[i].id;j++) printf("%d ",j); printf("%d\n",p[i].id); break; } } } return 0; }
2356:
#include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <queue> #include <cstdlib> using namespace std; #define INF 0x3fffffff #define clc(s,t) memset(s,t,sizeof(s)) #define N 10005 struct point{ int x,id; }p[N]; int t[N]; int n; int cmp(struct point a,struct point b){ if(a.x == b.x) return a.id < b.id; return a.x<b.x; } int main(){ while(scanf("%d",&n)!=EOF){ int i,j; for(i = 1;i<=n;i++){ scanf("%d",&t[i]); p[i].x = t[i]%n; p[i].id = i; } for(i = 2;i<=n;i++) p[i].x = (p[i-1].x+p[i].x)%n; sort(p+1,p+1+n,cmp); for(i = 1;i<=n;i++){ if(p[i].x == 0){ printf("%d\n",p[i].id); for(j = 1;j<=p[i].id;j++) printf("%d\n",t[j]); break; } if(i>1 && p[i].x == p[i-1].x){ printf("%d\n",p[i].id-p[i-1].id); for(j = p[i-1].id+1;j<=p[i].id;j++) printf("%d\n",t[j]); break; } } } return 0; }