Find the number of ways to tile an m*n rectangle with long dominoes -- 3*1 rectangles.
Each domino must be completely within the rectangle, dominoes must not overlap (of course, they may touch each other), each point of the rectangle must be covered.
Input
The input contains several cases. Each case stands two integers m and n (1 <= m <= 9, 1 <= n <= 30) in a single line. The input ends up with a case of m = n = 0.
Output
Output the number of ways to tile an m*n rectangle with long dominoes.
Sample Input
3 3 3 10 0 0
Sample Output
2 28
于是判断两个状态i,j是否兼容就有了这个判断:
bool check(int i,int j){
int num=0;
while(num<m){
int a=i%3,b=j%3;
if(a == 0 && b != 1)return false;
if(a == 2 && b != 0)return false;
if(a == 1 && b == 0)return false;
if(a == 0 || a == 2)i=i/3,j=j/3,++num;
if(a == 1){
if(b == 2)i=i/3,j=j/3,++num;
else{
i=i/3,j=j/3,++num;
a=i%3,b=j%3;
if(a != 1)return false;
if(b != 1)return false;
i=i/3,j=j/3,++num;
a=i%3,b=j%3;
if(a != 1)return false;
if(b != 1)return false;
i=i/3,j=j/3,++num;
}
}
}
return true;
}
其他就是基本的状态压缩模版了
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <queue> #include <map> #include <cmath> #include <iomanip> #define INF 99999999 typedef long long LL; using namespace std; const int MAX=20000+10; int n,m; int digit[13],bin[13]; LL dp[MAX],temp[MAX];//对应j位为0表示第j位竖着,2表示j-1位竖着,1表示j被填充 bool check(int i,int j){ int num=0; while(num<m){ int a=i%3,b=j%3; if(a == 0 && b != 1)return false; if(a == 2 && b != 0)return false; if(a == 1 && b == 0)return false; if(a == 0 || a == 2)i=i/3,j=j/3,++num; if(a == 1){ if(b == 2)i=i/3,j=j/3,++num; else{ i=i/3,j=j/3,++num; a=i%3,b=j%3; if(a != 1)return false; if(b != 1)return false; i=i/3,j=j/3,++num; a=i%3,b=j%3; if(a != 1)return false; if(b != 1)return false; i=i/3,j=j/3,++num; } } } return true; } void cal(int i){ int size=0; memset(digit,0,sizeof digit); while(i)digit[size++]=i%3,i=i/3; } void dfs(int id,int k,int i,int j){//dfs搜索i能到达的状态j if(k>m)return; if(k == m){dp[j]+=temp[i];return;} if(digit[k] == 0){ dfs(id,k+1,i,j+bin[k]*2); } if(digit[k] == 2){ dfs(id,k+1,i,j+bin[k]*1); } if(digit[k] == 1){ dfs(id,k+1,i,j+bin[k]*0); if(digit[k+1] == 1 && digit[k+2] == 1) dfs(id,k+3,i,j+bin[k]+bin[k+1]+bin[k+2]); } } void DP(){ int bit=1,num=1; for(int i=1;i<=m;++i)bit=bit*3,num=num+bit; num-=bit; memset(temp,0,sizeof temp); for(int i=0;i<bit;++i)if(check(i,num))temp[i]=1; for(int k=0;k<n-1;++k){ for(int i=0;i<bit;++i)dp[i]=0; for(int i=0;i<bit;++i){ cal(i); dfs(k,0,i,0); } for(int i=0;i<bit;++i)temp[i]=dp[i]; } printf("%lld\n",temp[num]); } int main(){ bin[0]=1; for(int i=1;i<=10;++i)bin[i]=bin[i-1]*3; while(~scanf("%d%d",&m,&n),n+m){ DP(); } return 0; } /* void dfs(int id,int k,int i,int j){//由i逆推到能到达i的状态j if(k>m)return; if(k == m){dp[i]+=temp[j];return;} if(digit[k] == 0){ dfs(id,k+1,i,j+bin[k]*1); } if(digit[k] == 2){ dfs(id,k+1,i,j+bin[k]*0); } if(digit[k] == 1){ dfs(id,k+1,i,j+bin[k]*2); if(digit[k+1] == 1 && digit[k+2] == 1) dfs(id,k+3,i,j+bin[k]+bin[k+1]+bin[k+2]); } } void DP(){ int bit=1,num=1; for(int i=1;i<=m;++i)bit=bit*3,num=num+bit; num-=bit; memset(temp,0,sizeof temp); for(int i=0;i<bit;++i)if(check(i,num))temp[i]=1; for(int k=1;k<n;++k){ for(int i=0;i<bit;++i)dp[i]=0; for(int i=0;i<bit;++i){ cal(i); dfs(k,0,i,0); } for(int i=0;i<bit;++i)temp[i]=dp[i]; } printf("%lld\n",temp[num]); } */