题意:圆周上有n个点,标号为0-n-1。以这些点为顶点欲连m条边,其中每个顶点最多引出1条边。边可以在圆中也可以在圆外。问使得所有边不相交的连边方法是否存在?
思路:2-SAT。任意两条线如果在圆内相交,在圆外也必定相交,所以它们只能一个圆内一个圆外。以此建图tarjan之。边i在圆内用i表示,圆外用i+m表示。
#include <stdio.h> #include <string.h> #define max(a,b) ((a)>(b)?(a):(b)) #define min(a,b) ((a)<(b)?(a):(b)) #define N 1100 struct edge{ int y,next; }e[501*501*4]; struct link{ int x,y; }link[N]; int n,m,component,top,tops,id; int first[N],dfn[N],low[N],stack[N],strong[N]; void init(){ tops = -1; top = component = id = 0; memset(first,-1,sizeof(first)); memset(dfn,-1,sizeof(dfn)); memset(strong,0,sizeof(strong)); } void add(int x,int y){ e[top].y = y; e[top].next = first[x]; first[x] = top++; } int test_cross(int i,int j){ int num=0,k; int x1 = link[i].x; int y1 = link[i].y; int x2 = link[j].x; int y2 = link[j].y; for(k = min(x1,y1)+1;k<max(x1,y1);k++){//两对点交替排列则num值必为1 if(k==x2 || k==y2) num++; } return num==1; } void tarjan(int x){ int i,y; dfn[x] = low[x] = ++id; stack[++tops] = x; for(i = first[x];i!=-1;i=e[i].next){ y = e[i].y; if(dfn[y] == -1){ tarjan(y); low[x] = min(low[x],low[y]); } else if(!strong[y]) low[x] = min(low[x],dfn[y]); } if(dfn[x] == low[x]){ component++; do{ strong[stack[tops]] = component; }while(stack[tops--] != x); } } int main(){ int i,j; freopen("a.txt","r",stdin); init(); scanf("%d %d",&n,&m); for(i = 1;i<=m;i++) scanf("%d %d",&link[i].x,&link[i].y); for(i = 1;i<m;i++) for(j = i+1;j<=m;j++) if(test_cross(i,j)){ add(i,j+m);add(j,i+m); add(i+m,j);add(j+m,i); } for(i = 1;i<=2*m;i++) if(dfn[i] == -1) tarjan(i); for(i = 1;i<=m;i++) if(strong[i] && (strong[i] == strong[i+m])) break; if(i > m) printf("panda is telling the truth...\n"); else printf("the evil panda is lying again\n"); return 0; }