ural 1146 Maximum Sum 最大连续和

1146. Maximum Sum

Time limit: 0.5 second
Memory limit: 64 MB
Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the  maximal sub-rectangle. A sub-rectangle is any contiguous sub-array of size 1 × 1 or greater located within the whole array.
As an example, the maximal sub-rectangle of the array:
0 −2 −7 0
9 2 −6 2
−4 1 −4 1
−1 8 0 −2
is in the lower-left-hand corner and has the sum of 15.

Input

The input consists of an  N ×  N array of integers. The input begins with a single positive integer  Non a line by itself indicating the size of the square two dimensional array. This is followed by  N  2integers separated by white-space (newlines and spaces). These  N  2 integers make up the array in row-major order (i.e., all numbers on the first row, left-to-right, then all numbers on the second row, left-to-right, etc.).  N may be as large as 100. The numbers in the array will be in the range [−127, 127].

Output

The output is the sum of the maximal sub-rectangle.

Sample

input output
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
15




题意:给个n*n的矩阵,所有子矩阵中 ,和最大等于多少。 


做法:

首先要理解一个O(n)的算法 。 

给一个数组  求连续和的最大值。 可以用一个sum来从下标0开始计算和,不断取最大值。当加和小于0的时候 初始化为0;

如 3 -4 5 1 -2    第一个步加和是3,再加上第二个-4 ,sum就变成-1了,所以要初始化sum为0,再加5 ,再加1, 最后得到最大值为6。


然后对于矩阵,我们可以先预处理,sum[ i ] [ j ]为 第 i 列的 前j项和;


然后枚举 两列 i,j  ,然后k表示行 从1到n。  那么sum[ k ][ j ] -sum [ k ][ i - 1 ]  就是k行 i列到j列的和,可以看作是一个点的值,就和上面讲的一样,一点点加过来,然后遇到负值初始化为0 就可以了。最后的最大值 就是答案了。 


暴力: 预处理了 sum数组,预处理 sum[ i ][ j ]= (0,0) 到(i,j)的和。然后枚举矩阵中任意两点,求最大和。 复杂度是10^8/4  也就是 2*10^7次,也可以ac。



#include<stdio.h>
#include<string.h>

int sum[110][110];
int main()
{
	int n;
	while(scanf("%d",&n)!=EOF)
	{
		memset(sum,0,sizeof sum);
		for(int i=1;i<=n;i++)
		{
			for(int j=1;j<=n;j++)
			{
				int a;
				scanf("%d",&a);
				sum[i][j]=sum[i][j-1]+a;
			}
		}
		int ans=-1000000000;
		for(int i=1;i<=n;i++)
		for(int j=i;j<=n;j++)//j>=i
		for(int k=1,tem=0;k<=n;k++)
		{
			tem+=sum[k][j]-sum[k][i-1];
			ans=ans>tem?ans:tem;
			if(tem<0) tem=0;
		}
		printf("%d\n",ans);
	}
	return 0;

}


//暴力
#include <stdio.h>
#include <math.h>
#include <algorithm>
using namespace std;

int sum[110][110];
int a[110][110];
int main()
{  
	int n;
	//freopen("output.txt","w",stdout);
	while(~scanf("%d",&n))
	{
		for(int i=0;i<n;i++)
		{
			for(int j=0;j<n;j++)
			{
				scanf("%d",&a[i][j]);
				int tem=a[i][j];
				if(i!=0)
					tem+=sum[i-1][j];
				if(j!=0)
					tem+=sum[i][j-1];
				if(i!=0&&j!=0)
					tem-=sum[i-1][j-1];
				sum[i][j]=tem;
				//printf("%d  ",tem);
			}
			//puts("");
		}

		

		int flag=1;
		int maxx;
		for(int i=0;i<n;i++)
		for(int j=0;j<n;j++)
		for(int k=0;k<=i;k++)
		for(int l=0;l<=j;l++)
		{
			int tem=0;
			tem+=sum[i][j]; 

			if(k!=0)
			tem-=sum[k-1][j];
			if(l!=0)
			tem-=sum[i][l-1];
			if(l!=0&&k!=0)
			tem+=sum[k-1][l-1]; 

			if(tem==11)
				int aa=2;
			if(flag)
			{
				maxx=tem;
				flag=0;
			}
			else
				maxx=max(maxx,tem);
		}
		printf("%d\n",maxx);
	}
	return 0; 
} 

/*

4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2


5 
1 1 1 1 1
1 1 1 1 1
1 1 -99 1 1
1 1 1 1 1
1 1 1 1 1
*/





你可能感兴趣的:(ACM)