如果要安装最新的docker版本,那么需要安装https支持
apt-get install apt-transport-https
$ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys 36A1D7869245C8950F966E92D8576A8BA88D21E9
$ sudo sh -c "echo deb https://get.docker.io/ubuntu docker main\
> /etc/apt/sources.list.d/docker.list"
$ sudo apt-get update
$ sudo apt-get install lxc-docker
这样就安装完毕了。
首先,我们会查看Docker是否能正常工作,然后学习基本的Docker的工作流:创建并管理容器。我们将浏览容器的典型生命周期:从创建、管理到停止,直到最终删除。
第一步,查看 docker
程序是否存在,功能是否正常,如代码清单3-1所示。
代码清单3-1 查看 docker
程序是否正常工作
$ sudo docker info
Containers: 1
Images: 8
Storage Driver: aufs
Root Dir: /var/lib/docker/aufs
Backing Filesystem: extfs
Dirs: 10
Execution Driver: native-0.2
Kernel Version: 3.13.0-43-generic
Operating System: Ubuntu 14.04.2 LTS
CPUs: 1
Total Memory: 994 MiB
Name: riemanna
ID: DOIT:XN5S:WNYP:WP7Q:BEUP:EBBL:KGIX:GO3V:NDR7:YW6E:VFXT:FXHM
WARNING: No swap limit support
在这里我们调用了 docker
可执行程序的 info
命令,该命令会返回所有容器和镜像(镜像即是Docker用来构建容器的“构建块”)的数量、Docker使用的执行驱动和存储驱动(execution and storage driver),以及Docker的基本配置。
在前面几章已经介绍过,Docker是基于客户端-服务器构架的。它有一个 docker
程序,既能作为客户端,也可以作为服务器端。作为客户端时, docker
程序向Docker守护进程发送请求(如请求返回守护进程自身的信息),然后再对返回的请求结果进行处理。
现在,让我们尝试启动第一个Docker容器。我们可以使用 docker run
命令创建容器,如代码清单3-2所示。 docker run
命令提供了Docker容器的创建到启动的功能,在本书中我们也会使用该命令来创建新容器。
代码清单3-2 运行我们的第一个容器
$ sudo docker run -i -t ubuntu /bin/bash
Unable to find image 'ubuntu' locally
ubuntu:latest: The image you are pulling has been verified
511136ea3c5a: Pull complete
d497ad3926c8: Pull complete
ccb62158e970: Pull complete
e791be0477f2: Pull complete
3680052c0f5c: Pull complete
22093c35d77b: Pull complete
5506de2b643b: Pull complete
Status: Downloaded newer image for ubuntu:latest
root@fcd78e1a3569:/#
提示
官方文档列出了完整的Docker命令列表,也可以使用docker help获取这些命令。此外,还可以使用Docker的man页(即执行man docker-run)。
代码清单3-3所示的命令的输出结果非常丰富,下面来逐条解析。
代码清单3-3 docker run
命令
$ sudo docker run -i -t ubuntu /bin/bash
首先,我们告诉Docker执行 docker run
命令,并指定了 -i
和 -t
两个命令行参数。 -i
标志保证容器中 STDIN
是开启的,尽管我们并没有附着到容器中。持久的标准输入是交互式shell的“半边天”, -t
标志则是另外“半边天”,它告诉Docker为要创建的容器分配一个伪tty终端。这样,新创建的容器才能提供一个交互式shell。若要在命令行下创建一个我们能与之进行交互的容器,而不是一个运行后台服务的容器,则这两个参数已经是最基本的参数了。
提示
官方文档上列出了docker run命令的所有标志,此外还可以用命令docker help run查看这些标志。或者,也可以用Docker的man页(也就是执行man docker-run命令)。
接下来,我们告诉Docker基于什么镜像来创建容器,示例中使用的是 ubuntu
镜像。 ubuntu
镜像是一个常备镜像,也可以称为“基础”(base)镜像,它由Docker公司提供,保存在Docker Hub ** Registry上。可以以 ubuntu
基础镜像(以及类似的fedora
、 debian
、 centos
等镜像)为基础,在选择的操作系统上构建自己的镜像。到目前为止,我们基于此基础镜像启动了一个容器,并且没有对容器增加任何东西。
提示
我们将在第4章对镜像做更详细的介绍,包括如何构建我们自己的镜像。
那么,在这一切的背后又都发生了什么呢?首先Docker会检查本地是否存在ubuntu
镜像,如果本地还没有该镜像的话,那么Docker就会连接官方维护的Docker Hub Registry,查看Docker Hub中是否有该镜像。Docker一旦找到该镜像,就会下载该镜像并将其保存到本地宿主机中。
随后,Docker在文件系统内部用这个镜像创建了一个新容器。该容器拥有自己的网络、IP地址,以及一个用来和宿主机进行通信的桥接网络接口。最后,我们告诉Docker在新容器中要运行什么命令,在本例中我们在容器中运行 /bin/bash
命令启动了一个Bash shell。
当容器创建完毕之后,Docker就会执行容器中的 /bin/bash
命令,这时就可以看到容器内的shell了,就像代码清单3-4所示。
代码清单3-4 第一个容器的shell
root@f7cbdac22a02:/#
现在,我们已经以 root
用户登录到了新容器中,容器的ID f7cbdac22a02``,乍看起来有些令人迷惑的字符串
。这是一个完整的Ubuntu系统,可以用它来做任何事情。下面就来研究一下这个容器。首先,我们可以获取该容器的主机名,如代码清单3-5所示。
代码清单3-5 检查容器的主机名
root@f7cbdac22a02:/# hostname
f7cbdac22a02
可以看到,容器的主机名就是该容器的ID。再来看看 /etc/hosts
文件,如代码清单3-6所示。
代码清单3-6 检查容器的/etc/hosts文件
root@f7cbdac22a02:/# cat /etc/hosts
172.17.0.4 f7cbdac22a02
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
Docker已在 hosts
文件中为该容器的IP地址添加了一条主机配置项。再来看看容器的网络配置情况,如代码清单3-7所示。
代码清单3-7 检查容器的接口
root@f7cbdac22a02:/# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UNKNOWN group default
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
899: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP group default qlen 1000
link/ether 16:50:3a:b6:f2:cc brd ff:ff:ff:ff:ff:ff
inet 172.17.0.4/16 scope global eth0
inet6 fe80::1450:3aff:feb6:f2cc/64 scope link
valid_lft forever preferred_lft forever
可以看到,这里有 lo
的环回接口,还有IP为 172.17.0.4
的标准 eth0
网络接口,和普通宿主机是完全一样的。我们还可以查看容器中运行的进程,如代码清单3-8所示。
代码清单3-8 检查容器的进程
root@f7cbdac22a02:/# ps -aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 18156 1936 ? Ss May30 0:00 /bin/bash
root 21 0.0 0.0 15568 1100 ? R+ 02:38 0:00 ps -aux
接下来要干些什么呢?安装一个软件包怎么样?如代码清单3-9所示。
代码清单3-9 在第一个容器中安装软件包
root@f7cbdac22a02:/# apt-get update && apt-get install vim
通过上述命令,就在容器中安装了Vim软件。
用户可以继续在容器中做任何自己想做的事情。当所有工作都结束时,输入 exit
,就可以返回到Ubuntu宿主机的命令行提示符了。
这个容器现在怎样了?容器现在已经停止运行了!只有在指定的 /bin/bash
命令处于运行状态的时候,我们的容器也才会相应地处于运行状态。一旦退出容器,/bin/bash
命令也就结束了,这时容器也随之停止了运行。
但容器仍然是存在的,可以用 docker ps -a
命令查看当前系统中容器的列表,如代码清单3-10所示。
代码清单3-10 列出Docker容器
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
1cd57c2cdf7f ubuntu:14.04 "/bin/bash" A minute Exited
gray_cat
默认情况下,当执行 docker ps
命令时,只能看到正在运行的容器。如果指定 -a
标志的话,那么 docker ps
命令会列出所有容器,包括正在运行的和已经停止的。
提示
也可以为docker ps命令指定-l标志,列出最后一个运行的容器,无论其正在运行还是已经停止。也可以通过--format标志,进一步控制显示哪些信息,以及如何显示这些信息。
从该命令的输出结果中我们可以看到关于这个容器的很多有用信息:ID、用于创建该容器的镜像、容器最后执行的命令、创建时间以及容器的退出状态(在上面的例子中,退出状态是 0
,因为容器是通过正常的 exit
命令退出的)。我们还可以看到,每个容器都有一个名称。
注意
有3种方式可以唯一指代容器:短UUID(如f7cbdac22a02)、长UUID(如f7cbdac 22a02e03c9438c729345e54db9d20cfa2ac1fc3494b6eb60872e74778)或者名称(如gray_cat)。
Docker会为我们创建的每一个容器自动生成一个随机的名称。例如,上面我们刚刚创建的容器就被命名为 gray_cat
。如果想为容器指定一个名称,而不是使用自动生成的名称,则可以用 --name
标志来实现,如代码清单3-11所示。
代码清单3-11 给容器命名
$ sudo docker run --name bob_the_container -i -t ubuntu /bin/bash
root@aa3f365f0f4e:/# exit
上述命令将会创建一个名为 bob_the_container
的容器。一个合法的容器名称只能包含以下字符:小写字母a~z、大写字母A~Z、数字0~9、下划线、圆点、横线(如果用正则表达式来表示这些符号,就是 [a-zA-Z0-9``_``.-]
)。
在很多Docker命令中,都可以用容器的名称来替代容器ID,后面我们将会看到。容器名称有助于分辨容器,当构建容器和应用程序之间的逻辑连接时,容器的名称也有助于从逻辑上理解连接关系。具体的名称(如 web
、 db
)比容器ID和随机容器名好记多了。我推荐大家都使用容器名称,以更加方便地管理容器。
注意
我们将会在第5章详细介绍如何连接到Docker容器。
容器的命名必须是唯一的。如果试图创建两个名称相同的容器,则命令将会失败。如果要使用的容器名称已经存在,可以先用 docker rm
命令删除已有的同名容器后,再来创建新的容器。
bob_the_container
容器已经停止了,接下来我们能对它做些什么呢?如果愿意,我们可以用下面的命令重新启动一个已经停止的容器,如代码清单3-12所示。
代码清单3-12 启动已经停止运行的容器
$ sudo docker start bob_the_container
除了容器名称,也可以用容器ID来指定容器,如代码清单3-13所示。
代码清单3-13 通过ID启动已经停止运行的容器
$ sudo docker start aa3f365f0f4e
提示
也可以使用docker restart命令来重新启动一个容器。
这时运行不带 -a
标志的 docker ps
命令,就应该看到我们的容器已经开始运行了。
注意
类似地,Docker也提供了docker create命令来创建一个容器,但是并不运行它。这让我们可以在自己的容器工作流中对其进行细粒度的控制。
Docker容器重新启动的时候,会沿用 docker run
命令时指定的参数来运行,因此我们的容器重新启动后会运行一个交互式会话shell。此外,也可以用 docker attach
命令,重新附着到该容器的会话上,如代码清单3-14所示。
代码清单3-14 附着到正在运行的容器
$ sudo docker attach bob_the_container
也可以使用容器ID,重新附着到容器的会话上,如代码清单3-15所示。
代码清单3-15 通过ID附着到正在运行的容器
$ sudo docker attach aa3f365f0f4e
现在,又重新回到了容器的Bash提示符,如代码清单3-16所示。
代码清单3-16 重新附着到容器的会话
root@aa3f365f0f4e:/_#_
提示
可能需要按下回车键才能进入该会话。
如果退出容器的shell,容器会再次停止运行。
除了这些交互式运行的容器(interactive container),也可以创建长期运行的容器。守护式容器(daemonized container)没有交互式会话,非常适合运行应用程序和服务。大多数时候我们都需要以守护式来运行我们的容器。下面就来启动一个守护式容器,如代码清单3-17所示。
代码清单3-17 创建长期运行的容器
$ sudo docker run --name daemon_dave -d ubuntu /bin/sh -c "while true; do echo hello world; sleep 1; done" 1333bb1a66af402138485fe44a335b382c09a887aa9f95cb9725e309ce5b7db3
我们在上面的 docker run
命令使用了 -d
参数,因此Docker会将容器放到后台运行。
我们还在容器要运行的命令里使用了一个 while
循环,该循环会一直打印 hello world
,直到容器或其进程停止运行。
通过组合使用上面的这些参数,你会发现 docker run
命令并没有像上一个容器一样将主机的控制台附着到新的shell会话上,而是仅仅返回了一个容器ID而已,我们还是在主机的命令行之中。如果执行 docker ps
命令,可以看到一个正在运行的容器,如代码清单3-18所示。
代码清单3-18 查看正在运行的 daemon_dave
容器
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
1333bb1a66af ubuntu:14.04 /bin/sh -c 'while tr 32 secs ago Up 27
daemon_dave