WindowOperations(窗口操作)
Spark还提供了窗口的计算,它允许你使用一个滑动窗口应用在数据变换中。下图说明了该滑动窗口。
如图所示,每个时间窗口在一个个DStream中划过,每个DSteam中的RDD进入Window中进行合并,操作时生成为
窗口化DSteam的RDD。在上图中,该操作被应用在过去的3个时间单位的数据,和划过了2个时间单位。这说明任
何窗口操作都需要指定2个参数。
上面的2个参数的大小,必须是接受产生一个DStream时间的倍数
让我们用一个例子来说明窗口操作。比如说,你想用以前的WordCount的例子,来计算最近30s的数据的中的单词
数,10S接受为一个DStream。为此,我们要用reduceByKey操作来计算最近30s数据中每一个DSteam中关于
(word,1)的pair操作。它可以用reduceByKeyAndWindow操作来实现。一些常见的窗口操作如下。所有这些操作
都需要两个参数--- window length(窗口长度)和sliding interval(滑动间隔)。
-------------------------实验数据----------------------------------------------------------------------
spark
Streaming
better
than
storm
you
need
it
yes
do
it
(每秒在其中随机抽取一个,作为Socket端的输入),socket端的数据模拟和实验函数等程序见附录百度云链接
-----------------------------------------------window操作-------------------------------------------------------------------------//输入:窗口长度(隐:输入的滑动窗口长度为形成Dstream的时间) //输出:返回一个DStream,這个DStream包含這个滑动窗口下的全部元素 def window(windowDuration: Duration): DStream[T] = window(windowDuration, this.slideDuration) //输入:窗口长度和滑动窗口长度 //输出:返回一个DStream,這个DStream包含這个滑动窗口下的全部元素 def window(windowDuration: Duration, slideDuration: Duration): DStream[T] = ssc.withScope { new WindowedDStream(this, windowDuration, slideDuration) }
import org.apache.log4j.{Level, Logger} import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.{SparkConf, SparkContext} object windowOnStreaming { def main(args: Array[String]) { /** * this is test of Streaming operations-----window */ Logger.getLogger("org.apache.spark").setLevel(Level.ERROR) Logger.getLogger("org.eclipse.jetty.Server").setLevel(Level.OFF) val conf = new SparkConf().setAppName("the Window operation of SparK Streaming").setMaster("local[2]") val sc = new SparkContext(conf) val ssc = new StreamingContext(sc,Seconds(2)) //set the Checkpoint directory ssc.checkpoint("/Res") //get the socket Streaming data val socketStreaming = ssc.socketTextStream("master",9999) val data = socketStreaming.map(x =>(x,1)) //def window(windowDuration: Duration): DStream[T] val getedData1 = data.window(Seconds(6)) println("windowDuration only : ") getedData1.print() //same as // def window(windowDuration: Duration, slideDuration: Duration): DStream[T] //val getedData2 = data.window(Seconds(9),Seconds(3)) //println("Duration and SlideDuration : ") //getedData2.print() ssc.start() ssc.awaitTermination() } }
--------------------reduceByKeyAndWindow操作--------------------------------
/**通过对每个滑动过来的窗口应用一个reduceByKey的操作,返回一个DSream,有点像 * `DStream.reduceByKey(),但是只是這个函数只是应用在滑动过来的窗口,hash分区是采用spark集群 * 默认的分区树 * @param reduceFunc 从左到右的reduce 函数 * @param windowDuration 窗口时间 * 滑动窗口默认是1个batch interval * 分区数是是RDD默认(depend on spark集群core) */ def reduceByKeyAndWindow( reduceFunc: (V, V) => V, windowDuration: Duration ): DStream[(K, V)] = ssc.withScope { reduceByKeyAndWindow(reduceFunc, windowDuration, self.slideDuration, defaultPartitioner()) } /**通过对每个滑动过来的窗口应用一个reduceByKey的操作,返回一个DSream,有点像 * `DStream.reduceByKey(),但是只是這个函数只是应用在滑动过来的窗口,hash分区是采用spark集群 * 默认的分区树 * @param reduceFunc 从左到右的reduce 函数 * @param windowDuration 窗口时间 * @param slideDuration 滑动时间 */ def reduceByKeyAndWindow( reduceFunc: (V, V) => V, windowDuration: Duration, slideDuration: Duration ): DStream[(K, V)] = ssc.withScope { reduceByKeyAndWindow(reduceFunc, windowDuration, slideDuration, defaultPartitioner()) } /**通过对每个滑动过来的窗口应用一个reduceByKey的操作,返回一个DSream,有点像 * `DStream.reduceByKey(),但是只是這个函数只是应用在滑动过来的窗口,hash分区是采用spark集群 * 默认的分区树 * @param reduceFunc 从左到右的reduce 函数 * @param windowDuration 窗口时间 * @param slideDuration 滑动时间 * @param numPartitions 每个RDD的分区数. */ def reduceByKeyAndWindow( reduceFunc: (V, V) => V, windowDuration: Duration, slideDuration: Duration, numPartitions: Int ): DStream[(K, V)] = ssc.withScope { reduceByKeyAndWindow(reduceFunc, windowDuration, slideDuration, defaultPartitioner(numPartitions)) } /** /**通过对每个滑动过来的窗口应用一个reduceByKey的操作,返回一个DSream,有点像 * `DStream.reduceByKey(),但是只是這个函数只是应用在滑动过来的窗口,hash分区是采用spark集群 * 默认的分区树 * @param reduceFunc 从左到右的reduce 函数 * @param windowDuration 窗口时间 * @param slideDuration 滑动时间 * @param numPartitions 每个RDD的分区数. * @param partitioner 设置每个partition的分区数 */ def reduceByKeyAndWindow( reduceFunc: (V, V) => V, windowDuration: Duration, slideDuration: Duration, partitioner: Partitioner ): DStream[(K, V)] = ssc.withScope { self.reduceByKey(reduceFunc, partitioner) .window(windowDuration, slideDuration) .reduceByKey(reduceFunc, partitioner) } /** *通过对每个滑动过来的窗口应用一个reduceByKey的操作.同时对old RDDs进行了invReduceFunc操作 * hash分区是采用spark集群,默认的分区树 * @param reduceFunc从左到右的reduce 函数 * @param invReduceFunc inverse reduce function; such that for all y, invertible x: * `invReduceFunc(reduceFunc(x, y), x) = y` * @param windowDuration窗口时间 * @param slideDuration 滑动时间 * @param filterFunc 来赛选一定条件的 key-value 对的 */ def reduceByKeyAndWindow( reduceFunc: (V, V) => V, invReduceFunc: (V, V) => V, windowDuration: Duration, slideDuration: Duration = self.slideDuration, numPartitions: Int = ssc.sc.defaultParallelism, filterFunc: ((K, V)) => Boolean = null ): DStream[(K, V)] = ssc.withScope { reduceByKeyAndWindow( reduceFunc, invReduceFunc, windowDuration, slideDuration, defaultPartitioner(numPartitions), filterFunc ) } /** *通过对每个滑动过来的窗口应用一个reduceByKey的操作.同时对old RDDs进行了invReduceFunc操作 * hash分区是采用spark集群,默认的分区树 * @param reduceFunc从左到右的reduce 函数 * @param invReduceFunc inverse reduce function; such that for all y, invertible x: * `invReduceFunc(reduceFunc(x, y), x) = y` * @param windowDuration窗口时间 * @param slideDuration 滑动时间 * @param partitioner 每个RDD的分区数. * @param filterFunc 来赛选一定条件的 key-value 对的 */ def reduceByKeyAndWindow( reduceFunc: (V, V) => V, invReduceFunc: (V, V) => V, windowDuration: Duration, slideDuration: Duration, partitioner: Partitioner, filterFunc: ((K, V)) => Boolean ): DStream[(K, V)] = ssc.withScope { val cleanedReduceFunc = ssc.sc.clean(reduceFunc) val cleanedInvReduceFunc = ssc.sc.clean(invReduceFunc) val cleanedFilterFunc = if (filterFunc != null) Some(ssc.sc.clean(filterFunc)) else None new ReducedWindowedDStream[K, V]( self, cleanedReduceFunc, cleanedInvReduceFunc, cleanedFilterFunc, windowDuration, slideDuration, partitioner ) }
import org.apache.log4j.{Level, Logger} import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.{SparkConf, SparkContext} object reduceByWindowOnStreaming { def main(args: Array[String]) { /** * this is test of Streaming operations-----reduceByKeyAndWindow */ Logger.getLogger("org.apache.spark").setLevel(Level.ERROR) Logger.getLogger("org.eclipse.jetty.Server").setLevel(Level.OFF) val conf = new SparkConf().setAppName("the reduceByWindow operation of SparK Streaming").setMaster("local[2]") val sc = new SparkContext(conf) val ssc = new StreamingContext(sc,Seconds(2)) //set the Checkpoint directory ssc.checkpoint("/Res") //get the socket Streaming data val socketStreaming = ssc.socketTextStream("master",9999) val data = socketStreaming.map(x =>(x,1)) //def reduceByKeyAndWindow(reduceFunc: (V, V) => V, windowDuration: Duration ): DStream[(K, V)] //val getedData1 = data.reduceByKeyAndWindow(_+_,Seconds(6)) val getedData2 = data.reduceByKeyAndWindow(_+_, (a,b) => a+b*0 ,Seconds(6),Seconds(2)) val getedData1 = data.reduceByKeyAndWindow(_+_,_-_,Seconds(9),Seconds(6)) println("reduceByKeyAndWindow : ") getedData1.print() ssc.start() ssc.awaitTermination() } }
這里出现了invReduceFunc函数這个函数有点特别,一不注意就会出错,现在通过分析源码中的
ReducedWindowedDStream這个类内部来进行说明:
------------------reduceByWindow操作---------------------------
/输入:reduceFunc、窗口长度、滑动长度 //输出:(a,b)为从几个从左到右一次取得两个元素 //(,a,b)进入reduceFunc, def reduceByWindow( reduceFunc: (T, T) => T, windowDuration: Duration, slideDuration: Duration ): DStream[T] = ssc.withScope { this.reduce(reduceFunc).window(windowDuration, slideDuration).reduce(reduceFunc) } /** *输入reduceFunc,invReduceFunc,窗口长度、滑动长度 */ def reduceByWindow( reduceFunc: (T, T) => T, invReduceFunc: (T, T) => T, windowDuration: Duration, slideDuration: Duration ): DStream[T] = ssc.withScope { this.map((1, _)) .reduceByKeyAndWindow(reduceFunc, invReduceFunc, windowDuration, slideDuration, 1) .map(_._2) }
import org.apache.log4j.{Level, Logger} import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.{SparkConf, SparkContext} /** * Created by root on 6/23/16. */ object reduceByWindow { def main(args: Array[String]) { /** * this is test of Streaming operations-----reduceByWindow */ Logger.getLogger("org.apache.spark").setLevel(Level.ERROR) Logger.getLogger("org.eclipse.jetty.Server").setLevel(Level.OFF) val conf = new SparkConf().setAppName("the reduceByWindow operation of SparK Streaming").setMaster("local[2]") val sc = new SparkContext(conf) val ssc = new StreamingContext(sc,Seconds(2)) //set the Checkpoint directory ssc.checkpoint("/Res") //get the socket Streaming data val socketStreaming = ssc.socketTextStream("master",9999) //val data = socketStreaming.reduceByWindow(_+_,Seconds(6),Seconds(2)) val data = socketStreaming.reduceByWindow(_+_,_+_,Seconds(6),Seconds(2)) println("reduceByWindow: count the number of elements") data.print() ssc.start() ssc.awaitTermination() } }
-----------------------------------------------countByWindow操作---------------------------------
/** * 输入 窗口长度和滑动长度,返回窗口内的元素数量 * @param windowDuration 窗口长度 * @param slideDuration 滑动长度 */ def countByWindow( windowDuration: Duration, slideDuration: Duration): DStream[Long] = ssc.withScope { this.map(_ => 1L).reduceByWindow(_ + _, _ - _, windowDuration, slideDuration) //窗口下的DStream进行map操作,把每个元素变为1之后进行reduceByWindow操作 }
import org.apache.log4j.{Level, Logger} import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.{SparkConf, SparkContext} /** * Created by root on 6/23/16. */ object countByWindow { def main(args: Array[String]) { /** * this is test of Streaming operations-----countByWindow */ Logger.getLogger("org.apache.spark").setLevel(Level.ERROR) Logger.getLogger("org.eclipse.jetty.Server").setLevel(Level.OFF) val conf = new SparkConf().setAppName("the reduceByWindow operation of SparK Streaming").setMaster("local[2]") val sc = new SparkContext(conf) val ssc = new StreamingContext(sc,Seconds(2)) //set the Checkpoint directory ssc.checkpoint("/Res") //get the socket Streaming data val socketStreaming = ssc.socketTextStream("master",9999) val data = socketStreaming.countByWindow(Seconds(6),Seconds(2)) println("countByWindow: count the number of elements") data.print() ssc.start() ssc.awaitTermination() } }
-------------------------------- countByValueAndWindow-------------
/** *输入 窗口长度、滑动时间、RDD分区数(默认分区是等于并行度) * @param windowDuration width of the window; must be a multiple of this DStream's * batching interval * @param slideDuration sliding interval of the window (i.e., the interval after which * the new DStream will generate RDDs); must be a multiple of this * DStream's batching interval * @param numPartitions number of partitions of each RDD in the new DStream. */ def countByValueAndWindow( windowDuration: Duration, slideDuration: Duration, numPartitions: Int = ssc.sc.defaultParallelism) (implicit ord: Ordering[T] = null) : DStream[(T, Long)] = ssc.withScope { this.map((_, 1L)).reduceByKeyAndWindow( (x: Long, y: Long) => x + y, (x: Long, y: Long) => x - y, windowDuration, slideDuration, numPartitions, (x: (T, Long)) => x._2 != 0L ) }
import org.apache.log4j.{Level, Logger} import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.{SparkConf, SparkContext} /** * Created by root on 6/23/16. */ object countByValueAndWindow { def main(args: Array[String]) { /** * this is test of Streaming operations-----countByValueAndWindow */ Logger.getLogger("org.apache.spark").setLevel(Level.ERROR) Logger.getLogger("org.eclipse.jetty.Server").setLevel(Level.OFF) val conf = new SparkConf().setAppName("the reduceByWindow operation of SparK Streaming").setMaster("local[2]") val sc = new SparkContext(conf) val ssc = new StreamingContext(sc,Seconds(2)) //set the Checkpoint directory ssc.checkpoint("/Res") //get the socket Streaming data val socketStreaming = ssc.socketTextStream("master",9999) val data = socketStreaming.countByValueAndWindow(Seconds(6),Seconds(2)) println("countByWindow: count the number of elements") data.print() ssc.start() ssc.awaitTermination() } }
附录
链接:http://pan.baidu.com/s/1slkqwBb 密码:d92r