Volley网络框架学习笔记(四)

看完了前三篇,大家对Volley的使用基本是没有问题的。
知其然要知其所以然,所以现在就可以去了解一下源码了,走一遍Volley的工作流程。

首先还是先上图:

其中蓝色部分代表主线程,绿色部分代表缓存线程,橙色部分代表网络线程。我们在主线程中调用RequestQueue的add()方法来添加一条网络请求,这条请求会先被加入到缓存队列当中,如果发现可以找到相应的缓存结果就直接读取缓存并解析,然后回调给主线程。如果在缓存中没有找到结果,则将这条请求加入到网络请求队列中,然后处理发送HTTP请求,解析响应结果,写入缓存,并回调主线程。

大家现在应该还是对这张图想要表达的意思还是模糊的,看了源码后才后更加的理解。这里注重的不是源码本身,而是从分析源码的切入角度入手。

一.RequestQueue

首先我们可以先理顺一下使用Volley请求的顺序:

1.新建一个队列queue

2.新建一个请求Request

3.使用add方法queue.add(Request)

现在我们根据这个步骤来学习一下,重要的是自己去Volley包中找到相应的位置,遇到不懂的方法或函数就跳转到相应的类中去寻找答案,这样对理解是很有帮助的

public static RequestQueue newRequestQueue(Context context) {  
    return newRequestQueue(context, null);  
}  

可以看到,调用了newRequestQueue()的方法重载。所以我们现在去看newRequestQueue()方法

#Volley

public static RequestQueue newRequestQueue(Context context) {
        return newRequestQueue(context, null);
    }

public static RequestQueue newRequestQueue(Context context, HttpStack stack)
    {
        return newRequestQueue(context, stack, -1);
    }
public static RequestQueue newRequestQueue(Context context, HttpStack stack, int maxDiskCacheBytes) {
        File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);

        String userAgent = "volley/0";
        try {
            String packageName = context.getPackageName();
            PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);
            userAgent = packageName + "/" + info.versionCode;
        } catch (NameNotFoundException e) {
        }

        if (stack == null) {
            if (Build.VERSION.SDK_INT >= 9) {
                stack = new HurlStack();
            } else {
                // Prior to Gingerbread, HttpUrlConnection was unreliable.
                // See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html
                stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
            }
        }

        Network network = new BasicNetwork(stack);

        RequestQueue queue;
        if (maxDiskCacheBytes <= -1)
        {
            // No maximum size specified
            queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
        }
        else
        {
            // Disk cache size specified
            queue = new RequestQueue(new DiskBasedCache(cacheDir, maxDiskCacheBytes), network);
        }

        queue.start();

        return queue;
    }

上面主要是一些文件缓存之类的东西,最重要的是stack.如果stack是等于null的,则去创建一个HttpStack对象,这里会判断如果手机系统版本号是大于9的,则创建一个HurlStack的实例,否则就创建一个HttpClientStack的实例。实际上HurlStack的内部就是使用HttpURLConnection进行网络通讯的,而HttpClientStack的内部则是使用HttpClient进行网络通讯的.http是如何工作的,我们这里暂时不去关注。

接下来初始化了RequestQueue,然后调用了start()方法。
来看看RequestQueue的构造:

public RequestQueue(Cache cache, Network network) {
        this(cache, network, DEFAULT_NETWORK_THREAD_POOL_SIZE);
    }
public RequestQueue(Cache cache, Network network, int threadPoolSize) {
        this(cache, network, threadPoolSize,
                new ExecutorDelivery(new Handler(Looper.getMainLooper())));
    }
public RequestQueue(Cache cache, Network network, int threadPoolSize,
            ResponseDelivery delivery) {
        mCache = cache;
        mNetwork = network;
        mDispatchers = new NetworkDispatcher[threadPoolSize];
        mDelivery = delivery;
    }

初始化主要就是4个参数:mCache、mNetwork、mDispatchers、mDelivery。第一个是硬盘缓存;第二个主要用于Http相关操作;第三个用于转发请求的;第四个参数用于把结果转发到UI线程(ps:你可以看到new Handler(Looper.getMainLooper()))。
这里的参数有什么含义,我们暂时不知道,先不管,接着往下看。

接着就去看start( )方法

public void start() {  
    stop();  // Make sure any currently running dispatchers are stopped. 
    // Create the cache dispatcher and start it. 
    mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);  
    mCacheDispatcher.start();  
    // Create network dispatchers (and corresponding threads) up to the pool size. 
    for (int i = 0; i < mDispatchers.length; i++) {  
        NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,  
                mCache, mDelivery);  
        mDispatchers[i] = networkDispatcher;  
        networkDispatcher.start();  
    }  
}  

先用stop确保那几个线程都退出。有兴趣的可以参考下Volley中是怎么处理线程退出的(几个线程都是while(true){//doSomething})。
这里的CacheDispatcher和NetworkDispatcher都是继承自Thread的,而默认情况下for循环会执行四次,也就是说当调用了Volley.newRequestQueue(context)之后,就会有五个线程一直在后台运行,不断等待网络请求的到来,其中CacheDispatcher是缓存线程,NetworkDispatcher是网络请求线程。

二、add方法

接下来看比较复杂的add方法:

public <T> Request<T> add(Request<T> request) {  
    // Tag the request as belonging to this queue and add it to the set of current requests. 
    request.setRequestQueue(this);  
    synchronized (mCurrentRequests) {  
        mCurrentRequests.add(request);  
    }  
    // Process requests in the order they are added. 
    request.setSequence(getSequenceNumber());  
    request.addMarker("add-to-queue");  
    // If the request is uncacheable, skip the cache queue and go straight to the network. 
    if (!request.shouldCache()) {  
        mNetworkQueue.add(request);  
        return request;  
    }  
    // Insert request into stage if there's already a request with the same cache key in flight. 
    synchronized (mWaitingRequests) {  
        String cacheKey = request.getCacheKey();  
        if (mWaitingRequests.containsKey(cacheKey)) {  
            // There is already a request in flight. Queue up. 
            Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);  
            if (stagedRequests == null) {  
                stagedRequests = new LinkedList<Request<?>>();  
            }  
            stagedRequests.add(request);  
            mWaitingRequests.put(cacheKey, stagedRequests);  
            if (VolleyLog.DEBUG) {  
                VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);  
            }  
        } else {  
            // Insert 'null' queue for this cacheKey, indicating there is now a request in 
            // flight. 
            mWaitingRequests.put(cacheKey, null);  
            mCacheQueue.add(request);  
        }  
        return request;  
    }  

会判断当前的请求是否可以缓存,如果不能缓存则直接将这条请求加入网络请求队列,可以缓存的话则将这条请求加入缓存队列。在默认情况下,每条请求都是可以缓存的,当然我们也可以调用Request的setShouldCache(false)方法来改变这一默认行为。

OK,那么既然默认每条请求都是可以缓存的,自然就被添加到了缓存队列中,于是一直在后台等待的缓存线程就要开始运行起来了,我们看下CacheDispatcher中的run()方法,既然涉及到线程,最主要的部分就是run( )方法了,我们直接看代码如下所示:

三、CacheDispatcher

public class CacheDispatcher extends Thread {  

    ……  

    @Override  
    public void run() {  
        if (DEBUG) VolleyLog.v("start new dispatcher");  
        Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);  
        // Make a blocking call to initialize the cache. 
        mCache.initialize();  
        while (true) {  
            try {  
                // Get a request from the cache triage queue, blocking until 
                // at least one is available. 
                final Request<?> request = mCacheQueue.take();  
                request.addMarker("cache-queue-take");  
                // If the request has been canceled, don't bother dispatching it. 
                if (request.isCanceled()) {  
                    request.finish("cache-discard-canceled");  
                    continue;  
                }  
                // Attempt to retrieve this item from cache. 
                Cache.Entry entry = mCache.get(request.getCacheKey());  
                if (entry == null) {  
                    request.addMarker("cache-miss");  
                    // Cache miss; send off to the network dispatcher. 
                    mNetworkQueue.put(request);  
                    continue;  
                }  
                // If it is completely expired, just send it to the network. 
                if (entry.isExpired()) {  
                    request.addMarker("cache-hit-expired");  
                    request.setCacheEntry(entry);  
                    mNetworkQueue.put(request);  
                    continue;  
                }  
                // We have a cache hit; parse its data for delivery back to the request. 
                request.addMarker("cache-hit");  
                Response<?> response = request.parseNetworkResponse(  
                        new NetworkResponse(entry.data, entry.responseHeaders));  
                request.addMarker("cache-hit-parsed");  
                if (!entry.refreshNeeded()) {  
                    // Completely unexpired cache hit. Just deliver the response. 
                    mDelivery.postResponse(request, response);  
                } else {  
                    // Soft-expired cache hit. We can deliver the cached response, 
                    // but we need to also send the request to the network for 
                    // refreshing. 
                    request.addMarker("cache-hit-refresh-needed");  
                    request.setCacheEntry(entry);  
                    // Mark the response as intermediate. 
                    response.intermediate = true;  
                    // Post the intermediate response back to the user and have 
                    // the delivery then forward the request along to the network. 
                    mDelivery.postResponse(request, response, new Runnable() {  
                        @Override  
                        public void run() {  
                            try {  
                                mNetworkQueue.put(request);  
                            } catch (InterruptedException e) {  
                                // Not much we can do about this. 
                            }  
                        }  
                    });  
                }  
            } catch (InterruptedException e) {  
                // We may have been interrupted because it was time to quit. 
                if (mQuit) {  
                    return;  
                }  
                continue;  
            }  
        }  
    }  
}  

ok,首先要明确这个缓存指的是硬盘缓存(目录为context.getCacheDir()/volley)
可以看到这里是个无限循环,不断的从mCacheQueue去取出请求,如果请求已经被取消就直接结束;

接下来从缓存中获取:

=>如果没有取到,则加入mNetworkQueue

=>如果缓存过期,则加入mNetworkQueue

否则,就是取到了可用的缓存了;调用request.parseNetworkResponse解析从缓存中取出的data和responseHeaders;接下来判断TTL(主要还是判断是否过期),如果没有过期则直接通过mDelivery.postResponse转发,然后回调到UI线程;如果ttl不合法,回调完成后,还会将该请求加入mNetworkQueue。

好了,这里其实就是如果拿到合法的缓存,则直接转发到UI线程;反之,则加入到NetworkQueue.

四.NetworkDispatcher.

现在我们再来NetworkDispatcher

# NetworkDispatcher
//new NetworkDispatcher(mNetworkQueue, mNetwork,mCache, mDelivery)

public NetworkDispatcher(BlockingQueue<Request<?>> queue,
            Network network, Cache cache,
            ResponseDelivery delivery) {
        mQueue = queue;
        mNetwork = network;
        mCache = cache;
        mDelivery = delivery;
    }
@Override
    public void run() {
        Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
        while (true) {
            long startTimeMs = SystemClock.elapsedRealtime();
            Request<?> request;
            try {
                // Take a request from the queue.
                request = mQueue.take();
            } catch (InterruptedException e) {
                // We may have been interrupted because it was time to quit.
                if (mQuit) {
                    return;
                }
                continue;
            }

            try {
                request.addMarker("network-queue-take");

                // If the request was cancelled already, do not perform the
                // network request.
                if (request.isCanceled()) {
                    request.finish("network-discard-cancelled");
                    continue;
                }

                addTrafficStatsTag(request);

                // Perform the network request.
                NetworkResponse networkResponse = mNetwork.performRequest(request);
                request.addMarker("network-http-complete");

                // If the server returned 304 AND we delivered a response already,
                // we're done -- don't deliver a second identical response.
                if (networkResponse.notModified && request.hasHadResponseDelivered()) {
                    request.finish("not-modified");
                    continue;
                }

                // Parse the response here on the worker thread.
                Response<?> response = request.parseNetworkResponse(networkResponse);
                request.addMarker("network-parse-complete");

                // Write to cache if applicable.
                // TODO: Only update cache metadata instead of entire record for 304s.
                if (request.shouldCache() && response.cacheEntry != null) {
                    mCache.put(request.getCacheKey(), response.cacheEntry);
                    request.addMarker("network-cache-written");
                }

                // Post the response back.
                request.markDelivered();
                mDelivery.postResponse(request, response);
            } catch (VolleyError volleyError) {
                volleyError.setNetworkTimeMs(SystemClock.elapsedRealtime() - startTimeMs);
                parseAndDeliverNetworkError(request, volleyError);
            } catch (Exception e) {
                VolleyLog.e(e, "Unhandled exception %s", e.toString());
                VolleyError volleyError = new VolleyError(e);
                volleyError.setNetworkTimeMs(SystemClock.elapsedRealtime() - startTimeMs);
                mDelivery.postError(request, volleyError);
            }
        }
    }

看代码前,我们首先想一下逻辑,正常情况下我们会取出请求,让network去请求处理我们的请求,处理完成以后呢:加入缓存,然后转发。

代码是顺着思路的:
首先取出请求;然后通过mNetwork.performRequest(request)处理我们的请求,拿到NetworkResponse;接下来,使用request去解析我们的NetworkResponse。

拿到Response以后,判断是否应该缓存,如果需要,则缓存。

最后mDelivery.postResponse(request, response);转发;

五. 总结

首先初始化RequestQueue,主要就是开启几个Dispatcher线程(应该是4个),线程会不断读取请求(使用的阻塞队列,没有消息则阻塞)
当我们发出请求以后,会根据url属性等,构造出一个cacheKey,然后首先从LruCache中获取(这个缓存我们自己构建的,凡是实现ImageCache接口的都合法);如果没有取到,则判断是否存在硬盘缓存,这一步是从getCacheDir里面获取(默认5M);如果没有取到,则从网络请求;
网络请求等都是线程,主要内容在run()中,关注run我们就可以掌握核心。

你可能感兴趣的:(线程,缓存,源码分析,Volley,网络框架)