数据结构和算法 – 12.高级查找算法(上)

 

一、顺序查找

顺序查找(Sequential Search)又叫线性查找,是最基本的查找技术,它的查找过程是:从表中第一个(或最后一个)记录开始,逐个进行记录的关键字和给定值比较,若某个记录的关键字和给定值相等,则查找成功,找到所查的记录;如果直到最后一个(或第一个)记录,其关键字和给定值比较都不等时,则表中没有所查的记录,查找不成功。

URL:http://www.cnblogs.com/tangge/p/5351291.html#SX

二、二分查找

折半查找(Binary Search)技术,又称为二分查找。它的前提是线性表中的记录必须是关键码有序(通常从小到大有序),线性表必须采用顺序存储,其时间复杂度为O(logn)。

URL:http://www.cnblogs.com/tangge/p/5351291.html#EX

 

2.1.Array.BinarySearch方法

在调用这个方法前,需要确保作为参数的查找表内的关键字已经有序,否则就需要手动调用Array.Sort()方法进行排序。

 

2.2.System.Collections.SortedList类

数据结构和算法 – 12.高级查找算法(上)_第1张图片

SortedList类的Add方法,从中可以发现,它借助了Array.BinarySearch方法获取存储位置,也就是说它也使用了二分查找方法。

数据结构和算法 – 12.高级查找算法(上)_第2张图片

 

三、查找树方法

3.1.二叉查找树

(1)基本概念

二叉查找树(Binary Search Tree,BST)又称二叉排序树,它是满足如下性质的二叉树:

  • 若它的左子树非空,则左子树上所有记录的值均小于根记录的值;
  • 若它的右子树非空,则右子树上所有记录的值均大于根记录的值;
  • 左、右子树又各是一棵二叉查找树。

假如有一个序列{62,88,58,47,35,73,51,99,37,93},那么构造出来的二叉查找树如下图所示:

二叉查找树是递归定义的,其一般理解是:二叉查找树中任一节点,其值为k,只要该节点有左孩子,则左孩子的值必小于k,只要有右孩子,则右孩子的值必大于k。二叉查找树的一个重要的性质是:中序遍历该树得到的序列是一个递增有序的序列

URL:http://www.cnblogs.com/tangge/p/5549844.html

(2)二叉查找树的新增操作

数据结构和算法 – 12.高级查找算法(上)_第3张图片

(3)二叉查找树的删除操作

step1”叶子节点:直接删除该节点,再修改其父节点的指针(注意分是根节点和不是根节点)

(例:删除72)

数据结构和算法 – 12.高级查找算法(上)_第4张图片

step2”单支节点(即只有左子树或右子树):让p的子树与p的父亲节点相连,再删除p即可;(注意分是根节点和不是根节点两种情况)

(例:删除79)

数据结构和算法 – 12.高级查找算法(上)_第5张图片

step3”节点p的左子树和右子树均不为空:首先找到p的后继y,因为y一定没有左子树,所以可以删除y,并让y的父亲节点成为y的右子树的父亲节点,并用y的值代替p的值;或者可以先找到p的前驱x,x一定没有右子树,所以可以删除x,并让x的父亲节点成为y的左子树的父亲节点。

数据结构和算法 – 12.高级查找算法(上)_第6张图片

数据结构和算法 – 12.高级查找算法(上)_第7张图片

(4)二叉查找树的代码实现

有关二叉查找树的新增和删除节点如何实现,可以阅读《数据结构基础温故—4.树(中)》一文,该文使用C#实现了二叉查找树。

 

数据结构和算法 – 12.高级查找算法(上)_第8张图片


3.2.平衡二叉树

 (建议用红黑树)

AVL树

父节点的左子树和右子树的高度之差不能大于1,也就是说不能高过1层,否则该树就失衡了,此时就要旋转节点,在编码时,我们可以记录当前节点的高度,比如空节点是-1,叶子节点是0,非叶子节点的height往根节点递增,比如在下图中我们认为树的高度为h=2。

数据结构和算法 – 12.高级查找算法(上)_第9张图片

 

2.旋转

节点再怎么失衡都逃不过4种情况,下面我们一一来看一下。

① 左左情况(左子树的左边节点)

数据结构和算法 – 12.高级查找算法(上)_第10张图片

我们看到,在向树中追加“节点1”的时候,根据定义我们知道这样会导致了“节点3"失衡,满足“左左情况“,可以这样想,把这

棵树比作齿轮,我们在“节点5”处把齿轮往下拉一个位置,也就变成了后面这样“平衡”的形式,如果用动画解释就最好理解了。

 

② 右右情况(右子树的右边节点)

数据结构和算法 – 12.高级查找算法(上)_第11张图片

同样,”节点5“满足”右右情况“,其实我们也看到,这两种情况是一种镜像,当然操作方式也大同小异,我们在”节点1“的地方

将树往下拉一位,最后也就形成了我们希望的平衡效果。

 

③左右情况(左子树的右边节点)

数据结构和算法 – 12.高级查找算法(上)_第12张图片

从图中我们可以看到,当我们插入”节点3“时,“节点5”处失衡,注意,找到”失衡点“是非常重要的,当面对”左右情况“时,我们将

失衡点的左子树进行"右右情况旋转",然后进行”左左情况旋转“,经过这样两次的旋转就OK了,很有意思,对吧。

 

④右左情况(右子树的左边节点)

数据结构和算法 – 12.高级查找算法(上)_第13张图片

这种情况和“情景3”也是一种镜像关系,很简单,我们找到了”节点15“是失衡点,然后我们将”节点15“的右子树进行”左左情况旋转“,

然后进行”右右情况旋转“,最终得到了我们满意的平衡。

 

 

3:添加

    如果我们理解了上面的这几种旋转,那么添加方法简直是轻而易举,出现了哪一种情况调用哪一种方法而已。

 

 

4:删除

删除方法跟添加方法也类似,当删除一个结点的时候,可能会引起祖先结点的失衡,所以在每次”结点“回退的时候计算结点高度。

 

5: 测试

不像上一篇不能在二叉树中灌有序数据,平衡二叉树就没关系了,我们的需求是检索2012-7-30 4:00:00 到 2012-7-30 5:00:00

的登陆用户的ID,数据量在500w,看看平衡二叉树是如何秒杀对手。

 

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.IO;
using System.Diagnostics;

namespace DataStruct
{
    class Program
    {
        static void Main(string[] args)
        {
            AVLTree<int, int> avl = new AVLTree<int, int>();

            Dictionary<DateTime, int> dic = new Dictionary<DateTime, int>();

            AVLTree<DateTime, int> tree = new AVLTree<DateTime, int>();

            //500w
            for (int i = 1; i < 5000000; i++)
            {
                dic.Add(DateTime.Now.AddMinutes(i), i);

                tree.Add(DateTime.Now.AddMinutes(i), i);
            }

            //检索2012-7-30 4:00:00 到 2012-7-30 5:00:00的登陆人数
            var min = Convert.ToDateTime("2012/7/30 4:00:00");

            var max = Convert.ToDateTime("2012/7/30 5:00:00");

            var watch = Stopwatch.StartNew();

            var result1 = dic.Keys.Where(i => i >= min && i <= max).Select(i => dic[i]).ToList();

            watch.Stop();

            Console.WriteLine("字典查找耗费时间:{0}ms", watch.ElapsedMilliseconds);

            watch = Stopwatch.StartNew();

            var result2 = tree.SearchRange(min, max);

            watch.Stop();

            Console.WriteLine("平衡二叉树查找耗费时间:{0}ms", watch.ElapsedMilliseconds);

            Console.Read();
        }
    }

    #region 平衡二叉树节点
    /// <summary>
    /// 平衡二叉树节点
    /// </summary>
    /// <typeparam name="K"></typeparam>
    /// <typeparam name="V"></typeparam>
    public class AVLNode<K, V>
    {
        /// <summary>
        /// 节点元素
        /// </summary>
        public K key;

        /// <summary>
        /// 增加一个高度信息
        /// </summary>
        public int height;

        /// <summary>
        /// 节点中的附加值
        /// </summary>
        public HashSet<V> attach = new HashSet<V>();

        /// <summary>
        /// 左节点
        /// </summary>
        public AVLNode<K, V> left;

        /// <summary>
        /// 右节点
        /// </summary>
        public AVLNode<K, V> right;

        public AVLNode() { }

        public AVLNode(K key, V value, AVLNode<K, V> left, AVLNode<K, V> right)
        {
            //KV键值对
            this.key = key;
            this.attach.Add(value);

            this.left = left;
            this.right = right;
        }
    }
    #endregion

    public class AVLTree<K, V> where K : IComparable
    {
        public AVLNode<K, V> node = null;

        #region 添加操作
        /// <summary>
        /// 添加操作
        /// </summary>
        /// <param name="key"></param>
        /// <param name="value"></param>
        public void Add(K key, V value)
        {
            node = Add(key, value, node);
        }
        #endregion

        #region 添加操作
        /// <summary>
        /// 添加操作
        /// </summary>
        /// <param name="key"></param>
        /// <param name="value"></param>
        /// <param name="tree"></param>
        /// <returns></returns>
        public AVLNode<K, V> Add(K key, V value, AVLNode<K, V> tree)
        {
            if (tree == null)
                tree = new AVLNode<K, V>(key, value, null, null);

            //左子树
            if (key.CompareTo(tree.key) < 0)
            {
                tree.left = Add(key, value, tree.left);

                //如果说相差等于2就说明这棵树需要旋转了
                if (Height(tree.left) - Height(tree.right) == 2)
                {
                    //说明此时是左左旋转
                    if (key.CompareTo(tree.left.key) < 0)
                    {
                        tree = RotateLL(tree);
                    }
                    else
                    {
                        //属于左右旋转
                        tree = RotateLR(tree);
                    }
                }
            }

            //右子树
            if (key.CompareTo(tree.key) > 0)
            {
                tree.right = Add(key, value, tree.right);

                if ((Height(tree.right) - Height(tree.left) == 2))
                {
                    //此时是右右旋转
                    if (key.CompareTo(tree.right.key) > 0)
                    {
                        tree = RotateRR(tree);
                    }
                    else
                    {
                        //属于右左旋转
                        tree = RotateRL(tree);
                    }
                }
            }

            //将value追加到附加值中(也可对应重复元素)
            if (key.CompareTo(tree.key) == 0)
                tree.attach.Add(value);

            //计算高度
            tree.height = Math.Max(Height(tree.left), Height(tree.right)) + 1;

            return tree;
        }
        #endregion

        #region 计算当前节点的高度
        /// <summary>
        /// 计算当前节点的高度
        /// </summary>
        /// <param name="node"></param>
        /// <returns></returns>
        public int Height(AVLNode<K, V> node)
        {
            return node == null ? -1 : node.height;
        }
        #endregion

        #region 第一种:左左旋转(单旋转)
        /// <summary>
        /// 第一种:左左旋转(单旋转)
        /// </summary>
        /// <param name="node"></param>
        /// <returns></returns>
        public AVLNode<K, V> RotateLL(AVLNode<K, V> node)
        {
            //top:需要作为顶级节点的元素
            var top = node.left;

            //先截断当前节点的左孩子
            node.left = top.right;

            //将当前节点作为temp的右孩子
            top.right = node;

            //计算当前两个节点的高度
            node.height = Math.Max(Height(node.left), Height(node.right)) + 1;
            top.height = Math.Max(Height(top.left), Height(top.right)) + 1;

            return top;
        }
        #endregion

        #region 第二种:右右旋转(单旋转)
        /// <summary>
        /// 第二种:右右旋转(单旋转)
        /// </summary>
        /// <param name="node"></param>
        /// <returns></returns>
        public AVLNode<K, V> RotateRR(AVLNode<K, V> node)
        {
            //top:需要作为顶级节点的元素
            var top = node.right;

            //先截断当前节点的右孩子
            node.right = top.left;

            //将当前节点作为temp的右孩子
            top.left = node;

            //计算当前两个节点的高度
            node.height = Math.Max(Height(node.left), Height(node.right)) + 1;
            top.height = Math.Max(Height(top.left), Height(top.right)) + 1;

            return top;
        }
        #endregion

        #region 第三种:左右旋转(双旋转)
        /// <summary>
        /// 第三种:左右旋转(双旋转)
        /// </summary>
        /// <param name="node"></param>
        /// <returns></returns>
        public AVLNode<K, V> RotateLR(AVLNode<K, V> node)
        {
            //先进行RR旋转
            node.left = RotateRR(node.left);

            //再进行LL旋转
            return RotateLL(node);
        }
        #endregion

        #region 第四种:右左旋转(双旋转)
        /// <summary>
        /// 第四种:右左旋转(双旋转)
        /// </summary>
        /// <param name="node"></param>
        /// <returns></returns>
        public AVLNode<K, V> RotateRL(AVLNode<K, V> node)
        {
            //执行左左旋转
            node.right = RotateLL(node.right);

            //再执行右右旋转
            return RotateRR(node);

        }
        #endregion

        #region 是否包含指定元素
        /// <summary>
        /// 是否包含指定元素
        /// </summary>
        /// <param name="key"></param>
        /// <returns></returns>
        public bool Contain(K key)
        {
            return Contain(key, node);
        }
        #endregion

        #region 是否包含指定元素
        /// <summary>
        /// 是否包含指定元素
        /// </summary>
        /// <param name="key"></param>
        /// <param name="tree"></param>
        /// <returns></returns>
        public bool Contain(K key, AVLNode<K, V> tree)
        {
            if (tree == null)
                return false;
            //左子树
            if (key.CompareTo(tree.key) < 0)
                return Contain(key, tree.left);

            //右子树
            if (key.CompareTo(tree.key) > 0)
                return Contain(key, tree.right);

            return true;
        }
        #endregion

        #region 树的指定范围查找
        /// <summary>
        /// 树的指定范围查找
        /// </summary>
        /// <param name="min"></param>
        /// <param name="max"></param>
        /// <returns></returns>
        public HashSet<V> SearchRange(K min, K max)
        {
            HashSet<V> hashSet = new HashSet<V>();

            hashSet = SearchRange(min, max, hashSet, node);

            return hashSet;
        }
        #endregion

        #region 树的指定范围查找
        /// <summary>
        /// 树的指定范围查找
        /// </summary>
        /// <param name="range1"></param>
        /// <param name="range2"></param>
        /// <param name="tree"></param>
        /// <returns></returns>
        public HashSet<V> SearchRange(K min, K max, HashSet<V> hashSet, AVLNode<K, V> tree)
        {
            if (tree == null)
                return hashSet;

            //遍历左子树(寻找下界)
            if (min.CompareTo(tree.key) < 0)
                SearchRange(min, max, hashSet, tree.left);

            //当前节点是否在选定范围内
            if (min.CompareTo(tree.key) <= 0 && max.CompareTo(tree.key) >= 0)
            {
                //等于这种情况
                foreach (var item in tree.attach)
                    hashSet.Add(item);
            }

            //遍历右子树(两种情况:①:找min的下限 ②:必须在Max范围之内)
            if (min.CompareTo(tree.key) > 0 || max.CompareTo(tree.key) > 0)
                SearchRange(min, max, hashSet, tree.right);

            return hashSet;
        }
        #endregion

        #region 找到当前树的最小节点
        /// <summary>
        /// 找到当前树的最小节点
        /// </summary>
        /// <returns></returns>
        public AVLNode<K, V> FindMin()
        {
            return FindMin(node);
        }
        #endregion

        #region 找到当前树的最小节点
        /// <summary>
        /// 找到当前树的最小节点
        /// </summary>
        /// <param name="tree"></param>
        /// <returns></returns>
        public AVLNode<K, V> FindMin(AVLNode<K, V> tree)
        {
            if (tree == null)
                return null;

            if (tree.left == null)
                return tree;

            return FindMin(tree.left);
        }
        #endregion

        #region 找到当前树的最大节点
        /// <summary>
        /// 找到当前树的最大节点
        /// </summary>
        /// <returns></returns>
        public AVLNode<K, V> FindMax()
        {
            return FindMin(node);
        }
        #endregion

        #region 找到当前树的最大节点
        /// <summary>
        /// 找到当前树的最大节点
        /// </summary>
        /// <param name="tree"></param>
        /// <returns></returns>
        public AVLNode<K, V> FindMax(AVLNode<K, V> tree)
        {
            if (tree == null)
                return null;

            if (tree.right == null)
                return tree;

            return FindMax(tree.right);
        }
        #endregion

        #region 删除当前树中的节点
        /// <summary>
        /// 删除当前树中的节点
        /// </summary>
        /// <param name="key"></param>
        /// <returns></returns>
        public void Remove(K key, V value)
        {
            node = Remove(key, value, node);
        }
        #endregion

        #region 删除当前树中的节点
        /// <summary>
        /// 删除当前树中的节点
        /// </summary>
        /// <param name="key"></param>
        /// <param name="tree"></param>
        /// <returns></returns>
        public AVLNode<K, V> Remove(K key, V value, AVLNode<K, V> tree)
        {
            if (tree == null)
                return null;

            //左子树
            if (key.CompareTo(tree.key) < 0)
            {
                tree.left = Remove(key, value, tree.left);

                //如果说相差等于2就说明这棵树需要旋转了
                if (Height(tree.left) - Height(tree.right) == 2)
                {
                    //说明此时是左左旋转
                    if (key.CompareTo(tree.left.key) < 0)
                    {
                        tree = RotateLL(tree);
                    }
                    else
                    {
                        //属于左右旋转
                        tree = RotateLR(tree);
                    }
                }
            }
            //右子树
            if (key.CompareTo(tree.key) > 0)
            {
                tree.right = Remove(key, value, tree.right);

                if ((Height(tree.right) - Height(tree.left) == 2))
                {
                    //此时是右右旋转
                    if (key.CompareTo(tree.right.key) > 0)
                    {
                        tree = RotateRR(tree);
                    }
                    else
                    {
                        //属于右左旋转
                        tree = RotateRL(tree);
                    }
                }
            }
            /*相等的情况*/
            if (key.CompareTo(tree.key) == 0)
            {
                //判断里面的HashSet是否有多值
                if (tree.attach.Count > 1)
                {
                    //实现惰性删除
                    tree.attach.Remove(value);
                }
                else
                {
                    //有两个孩子的情况
                    if (tree.left != null && tree.right != null)
                    {
                        //根据平衡二叉树的中顺遍历,需要找到”有子树“的最小节点
                        tree.key = FindMin(tree.right).key;

                        //删除右子树的指定元素
                        tree.right = Remove(tree.key, value, tree.right);
                    }
                    else
                    {
                        //自减高度
                        tree = tree.left == null ? tree.right : tree.left;

                        //如果删除的是叶子节点直接返回
                        if (tree == null)
                            return null;
                    }
                }
            }

            //统计高度
            tree.height = Math.Max(Height(tree.left), Height(tree.right)) + 1;

            return tree;
        }
        #endregion
    }
}
View Code

 

3.3.红黑树

另一种与平衡二叉树类似的是红黑树,红黑树和AVL树的区别在于它使用颜色来标识节点的高度,它所追求的是局部平衡而不是AVL树中的非常严格的平衡。在.NET中的System.Collections.Generic命名空间下,SortedDictionary类就是使用红黑树实现的。红黑树和AVL树的原理非常接近,但是复杂度却远胜于AVL树,这里也就不做讨论。园子里也已经有了不少关于红黑树的比较好的介绍的文章,有兴趣的可以去阅读阅读。

http://www.cnblogs.com/abatei/archive/2008/12/17/1356565.html 

 

 

参考:http://www.cnblogs.com/edisonchou/p/4700850.html

http://www.cnblogs.com/abatei/archive/2008/11/17/1335031.html

http://www.cnblogs.com/huangxincheng/archive/2012/07/22/2603956.html

你可能感兴趣的:(数据结构和算法 – 12.高级查找算法(上))