《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)

SDTV-隔行扫描

支持的分辨率,以及它们各自的不同宽高比及帐率如下:

720×480i          4:3                29.97Hz

720×576i          4:3                25.00Hz

960×480i          16:9              29.97Hz

960×576i          16:9              25.00Hz

4:2:2 YCbCr并行接口

ITU-R BT.656和BT.1302并行接口是开发用于设备之间传输BT.601 4:2:2YCbCr数字视频数据的。SMPTE 125M和267M是对480i系统的进一步细化操作的标准。


图6.9显示的是4:3宽高比,27MHz采样时钟的一有效扫描行时序图。图6.10显示的是16:9宽高比,36MHz采样时钟的一有效扫描行时序图。使用的是25针的并行接口。

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第1张图片

 图6.9 BT.656和SMPTE125M定义的一扫描行数据的并行接口。

480i;4:2:2 YCbCr;每行720有效像素;27MHz采样时钟;10比特系统。对于576i系统的数字如括号中所示

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第2张图片

 图6.10 BT.1302和SMPTE267M定义的一扫描行数据的并行接口。

480i;4:2:2 YCbCr;每行960有效像素;36MHz采样时钟;10比特系统。对于576i系统的数字如括号中所示

4:2:2 YCbCr串行接口

BT.656和BT.1302也定义了YCbCr串行接口。图6.9和6.10所示的10比特4:2:2YCbCr并行数据串行化为270或360Mbps的串行接口。

4:4:4:4 YCbCrK并行接口

ITU-R BT.799和BT.1303是开发用于设备之间传输BT.601 4:4:4:4YCbCrK数字视频数据的。K是阿尔法监控信号,用于混合2路视频源,将在第七章中讨论。SMPTE RP-175M是对480i系统的进一步细化操作的标准。

复用结构

两路连接被使用。A路包含所有的Y采样点和那些Cb,Cr偶数采样点。B路包含所有键控通道和Cb,Cr的奇数采样点。这样虽然可以认为通道A是4:2:2,通道B是2:2:4格式,但是通道A不是真正的4:2:2信号,因为Cb采样频率是13.5MHz而不是6.75MHz。

图6.11所示是当传输4:4:4:4YCbCrK视频时的A,B通道内容。图6.12所示的是当传输R’G’B’K视频时的内容。如果监控信号(K)不存在,则K的采样值应该是3ACH。

图6.13所示是4:3宽高比,27MHz采样时钟的YCbCrK一有效扫描行时序图。图6.14所示是16:9宽高比,36MHz采样时钟的YCbCrK一有效扫描行时序图。使用的是2个25针的并行接口。

 
图6.11 YCbCrK视频信号的连接内容表示

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第3张图片

 

图6.12  R’G’B’K视频信号的连接内容表示

4:4:4:4YCbCrK串行接口

BT.799和BT.1303也定义了YCbCr串行接口。图6.13或 6.14所示的10比特4:2:2YCbCr并行数据串行化为270或360Mbps的串行接口。SMPTE RP-175M是对480i系统的进一步细化操作的标准。

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第4张图片

  图6.13 BT.799和SMPTE RP-175M定义的一扫描行数据的并行接口。


480i;4:4:4:4 YCbCrK;每行720有效像素;27MHz采样时钟;10比特系统。对于576i系统的数字如括号中所示

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第5张图片

 图6.14 BT.1303定义的一扫描行数据的并行接口。

480i;4:4:4:4 YCbCrK;每行960有效像素;36MHz采样时钟;10比特系统。对于576i系统的数字如括号中所示

RGBK并行接口

BT.799和BT.1303也支持用于设备之间传输BT.601 R’G’B’K数字视频数据的。对于额外的信息,请看4:4:4:4 YCbCrK并行接口。SMPTE RP-175M是对480i系统的进一步细化操作的标准。G’采样点在Y通道发送,R’采样点发送于Cr通道,B’采样点发送于Cb通道。

RGBK串行接口

BT.799和BT.1303也定义了R’G’B’K串行接口。两个10比特R’G’B’K并行数据流串行化为270或360Mbps的串行接口。


SDTV──逐行扫描

支持的分辨率,以及它们各自的不同宽高比及帐率如下:

720×480p         4:3                59.94Hz

720×576p         4:3                50.00Hz

4:2:2 YCbCr串行接口

ITU-R BT.1362定义了使用27MHz采样时钟的10比特4:2:2 YCbCr数据流(如图6.15所示)。SMPTE 294M是对480p系统的进一步细化操作的标准。


表6.22所示是数据流对应的扫描行。图6.15所示为两路10比特并行流串行化为270Mbps串行接口流。

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第6张图片

 

图6.15 BT.1362和SMPTE294M定义的两扫描行数据的并行接口。

480p;4:2:2 YCbCr;每行720有效像素;27MHz采样时钟;10比特系统。对于576p系统的数字如括号中所示

 

480p(525p)系统

576p(625p)系统

连接A

连接B

连接A

连接B

连接A

连接B

连接A

连接B

7

8

6

7

1

2

4

5

9

10

3

4

6

7

522

523

8

9

523

524

524

525

621

622

525

1

1

2

623

624

620

621

2

3

3

4

625

1

 

623

4

5

5

6

2

3

624

625

表6.22 BT2362和SMPTE294扫描行号和连接分配


HDTV──隔行扫描

支持的分辨率,以及它们各自的不同宽高比及帐频如下:

1920×1080i             16:9              25.00Hz

1920×1080i             16:9              29.97Hz

1920×1080i             16:9              30.00Hz

4:2:2 YCbCr并行接口

ITU-R BT.1120并行接口是开发用于设备之间传输HDTV 4:2:2YCbCr数字视频数据的。SMPTE 274M是对29.97和30Hz系统的进一步细化操作的标准。

图6.16显示的是1920×1080i一行有效扫描行时序图。使用的是93针的并行接口,采样时钟为74.25MHz(25或30Hz场频)或74.176MHz(29.97Hz场频)。

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第7张图片

 图6.16 BT.1120和SMPTE274M定义的一扫描行数据的并行接口。

1080i;29.97,30,59.94和60Hz系统;4:2:2 YCbCr;每行1920有效像素;74.176,74.25,148.35或148.5MHz采样时钟;10比特系统。对于25和50Hz系统的数字如括号中所示

4:2:2 YCbCr串行接口

BT.11206也定义了YCbCr串行接口。SMPTE292M是对29.97和30Hz系统的进一步细化操作的标准。图6.16所示的两路复用的10比特4:2:2 YCbCr并行数据串行化为1.485或1.4835Mbps的串行接口。

4:4:4:4 YCbCrK并行接口

ITU-R BT.1120也支持设备之间传输4:2:2:4 YCbCrK数字视频数据的。SMPTE274M是对29.97和30Hz系统的进一步细化操作的标准。


图6.17所示是分辨率为1920×1080i一扫描行时序图。使用的是93针的并行接口,采样时钟为74.25MHz(25或30Hz场频)或74.176MHz(29.97Hz场频)。

 

图6.17 BT.1120和SMPTE274M定义的一扫描行数据的并行接口。

1080i;29.97,30,59.94Hz和60Hz系统;4:2:2:4 YCbCrK;每行1920有效像素;74.176,74.25,148.35或148.5MHz采样时钟;10比特系统。对于25和50Hz系统的数字如括号中所示

RGB并行接口

BT.1120也支持用于设备之间传输HDTV 的R’G’B’数字视频数据。SMPTE274M是对29.97和30Hz系统的进一步细化操作的标准。

图6.18所示是分辨率为1920×1080i一扫描行时序图。使用的是93针的并行接口,采样时钟为74.25MHz(25或30Hz场频)或74.176MHz(29.97Hz场频)。


HDTV──逐行扫描

支持的分辨率,以及它们各自的不同宽高比及帐频如下:

1280×720p              16:9              23.98Hz

1280×720p              16:9              24.00Hz

1280×720p              16:9              25.00Hz

1280×720p              16:9              29397Hz

1280×720p              16:9              30.00Hz

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第8张图片

 
图6.18 BT.1120和SMPTE274M定义的一扫描行数据的并行接口。

1080i;29.97,30,59.94Hz和60Hz系统;R’G’B’;每行1920有效像素;74.176,74.25,148.35或148.5MHz采样时钟;10比特系统。对于25和50Hz系统的数字如括号中所示

 

1280×720p              16:9              50.00Hz

1280×720p              16:9              59.94Hz

1280×720p              16:9              60.00Hz

1920×1080p            16:9              23.98Hz

1920×1080p            16:9              24.00Hz

1920×1080p            16:9              25.00Hz

1920×1080p            16:9              29.97Hz

1920×1080p            16:9              30.00Hz

1920×1080p            16:9              50.00Hz

1920×1080p            16:9              59.94Hz

1920×1080p            16:9              60.00Hz

4:2:2 YCbCr并行接口

ITU-R BT.1120和SMPTE274M并行接口是开发用于设备之间传输HDTV 4:2:2YCbCr数字视频数据的。

图6.16显示的是1920×1080p一行有效扫描行时序图。使用的是93针的并行接口,采样时钟为148.5MHz(24,25,30,50或60Hz场频)或148.35MHz(23.98,29.97Hz或59.94场频)。

图6.19显示的是1280×720p一行有效扫描行时序图。使用的是93针的并行接口,采样时钟为74.25MHz(24,25,30,50或60Hz场频)或74.176MHz (23.98,29.97Hz或59.94场频)。

 图6.19 SMPTE274M定义的一扫描行数据的并行接口。

720p;59.94Hz和60Hz系统;4:2:2 YCbCr;每行1280有效像素;74.176或74.25MHz采样时钟;10比特系统。对于50Hz系统的数字如括号中所示

4:2:2 YCbCrK并行接口

ITU-R BT.1120和SMPTE274M并行接口是开发用于设备之间传输HDTV 4:2:2:4YCbCrK数字视频数据的。

图6.17显示的是1920×1080p一行有效扫描行时序图。使用的是93针的并行接口,采样时钟为148.5MHz(24,25,30,50或60Hz场频)或148.35MHz(23.98,29.97Hz或59.94场频)。

图6.20显示的是1280×720p一行有效扫描行时序图。使用的是93针的并行接口,采样时钟为74.25MHz(24,25,30,50或60Hz场频)或74.176MHz(23.98,29.97Hz或59.94场频)。

RGB并行接口

BT.1120和SMPTE274M也支持用于设备之间传输HDTV 的R’G’B’数字视频数据。

图6.18所示是分辨率为1920×1080p一扫描行时序图。使用的是93针的并行接口,采样时钟为148.5MHz(24,25,30,50或60Hz场频)或148.35MHz(23.98,29.97或59.94Hz场频)。

图6.21显示的是1280×720p一行有效扫描行时序图。使用的是93针的并行接口,采样时钟为74.25MHz(24,25,30,50或60Hz场频)或74.176MHz(23.98,29.97Hz或59.94场频)。

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第9张图片

图6.20 SMPTE274M定义的一扫描行数据的并行接口。


720p;59.94Hz和60Hz系统;4:2:2:4 YCbCrK;每行1280有效像素;74.176或74.25MHz采样时钟;10比特系统。对于50Hz系统的数字如括号中所示

 图6.21 MPTE274M定义的一扫描行数据的并行接口。

720p;59.94Hz和60Hz系统;4:2:2:4 R’G’B’;每行1280有效像素;74.176或74.25MHz采样时钟;10比特系统。对于50Hz系统的数字如括号中所示


专业视频复合接口

数字复合视频基本上是模拟(M)NTSC或(B,D,G,H,I)PAL视频信号的数字版本。采样时钟频率是FSC的4倍:对于(M)NTSC大概14.32MHz,对于(B,D,G,H,I)PAL大概是17.73MHz。

通常,8比特和10比特接口都被支持,10比特接口传输2比特的小数位视频数据减小累积处理误差,并支持10比特的辅助数据区。

表6.23列举了数字复合信号电平。10比特视频数据不使用000H~003H和3FCH~3FFH,8比特视频数据不使用00H和FFH,由于它们用于定时信息。

 


视频电平

(M)NTSC

(B,D,G,H,I)PAL

色度峰值

972

1040(最小1023)

白色

800

844

突发峰值

352

380

黑色

280

256

消影

240

256

突发峰值

128

128

色度峰值

104

128

同步

16

4


表6.23 数字复合视频信号10比特视频电平


NTSC 视频时序

如图6.22所示,每个扫描行总共包含910个采样点。水平计数0位于行有效视频开始处,行计数768位于行消影开始处。

是沿±I和±Q(33o,123o,。213o和303o)轴采样的。采样相位位于第一场+I(123o)轴第10行的计数0处,

同步边沿值和水平计数出现处,如图6.23和表6.24~6.26定义。单色突发周期的8比特值是45,83,75和37。突发信封开始于水平计数857处,持续43个时钟周期,如表6.24所示。注意,突发幅度峰值没有采样。

为保持0-SCH相位,水平计数784位于水平同步下降沿50%点之前25.6ns(副载波相位的33o)处。而水平计数785位于水平同步下降沿50%点之后44.2ns(副载波相位的57o)处。

 图6.22 数字复合(M)NTSC的模拟和数字时序关系


 图6.23 数字复合(M)NTSC同步时序

    对于8比特采样值的同步级数值如小括号中所示。


采样

16进制8比特值

16进制10比特值

场1,3

场2,4

场1,3

场2,4

768~782

3C

3C

0F0

0F0

783

3A

3A

0E9

0E9

784

29

29

0A4

0A4

785

11

11

044

044

786

04

04

011

011

787~849

04

04

010

010

850

06

06

017

017

851

17

17

05C

05C

852

2F

2F

0BC

0BC

853

3C

3C

0EF

0EF

854~856

3C

3C

0F0

0F0

857

3C

3C

0F0

0F0

858

3D

3B

0F4

0EC

859

37

41

0DC

104

860

36

42

0D6

10A

861

4B

2D

12C

0B4

862

49

2F

123

0BD

863

25

53

096

14A

864

2D

4B

0B3

12D

865

53

25

14E

092

866

4B

2D

12D

0B3

867

25

53

092

14E

868

2D

4B

0B3

12D

869

53

25

14E

092

870

4B

2D

12D

0B3

871

25

53

092

14E

872

2D

4B

0B3

12D

873

53

25

14E

092

874

4B

2D

12D

0B3

875

25

53

092

14E

876

2D

4B

0B3

12D

877

53

25

14E

092

878

4B

2D

12D

0B3

879

25

53

092

14E

880

2D

4B

0B3

12D

881

53

25

14E

092

882

4B

2D

12D

0B3

883

25

53

092

14E

884

2D

4B

0B3

12D

885

53

25

14E

092

886

4B

2D

12D

0B3

887

25

53

092

14E

888

2D

4B

0B3

12D

889

53

25

14E

092

890

4B

2D

12D

0B3

891

25

53

092

14E

892

2D

4B

0B3

12D

893

53

25

14E

092

894

4A

2E

129

0B7

895

2A

4E

0A6

13A

896

33

45

0CD

113

897

44

34

112

0CE

898

3F

39

0FA

0E6

899

3B

3D

0EC

0F4

900–909

3C

3C

0F0

0F0


表6.24 数字复合(M)NTSC视频信号行消影期的数字值

 


场1,3

场2,4

采样

16进制8位数据

16进制10位数据

采样

16进制8位数据

16进制10位数据

768–782

3C

0F0

313–327

3C

0F0

783

3A

0E9

328

3A

0E9

784

29

0A4

329

29

0A4

785

11

044

330

11

044

786

04

011

331

04

011

787–815

04

010

332–360

04

010

816

06

017

361

06

017

817

17

05C

362

17

05C

818

2F

0BC

363

2F

0BC

819

3C

0EF

364

3C

0EF

820–327

3C

0F0

365–782

3C

0F0

328

3A

0E9

783

3A

0E9

329

29

0A4

784

29

0A4

330

11

044

785

11

044

331

04

011

786

04

011

332–360

04

010

787–815

04

010

361

06

017

816

06

017

362

17

05C

817

17

05C

363

2F

0BC

818

2F

0BC

364

3C

0EF

819

3C

0EF

365–782

3C

0F0

820–327

3C

0F0


 

表6.25数字复合(M)NTSC视频信号行消影期的均衡脉冲值

 


场1,3

场2,4

采样

16进制8位数据

16进制10位数据

采样

16进制8位数据

16进制10位数据

782

3C

0F0

327

3C

0F0

783

3A

0E9

328

3A

0E9

784

29

0A4

329

29

0A4

785

11

044

330

11

044

786

04

011

331

04

011

787~260

04

010

332~715

04

010

261

06

017

716

06

017

262

17

05C

717

17

05C

263

2F

0BC

718

2F

0BC

264

3C

0EF

719

3C

0EF

265~327

3C

0F0

720~782

3C

0F0

328

3A

0E9

783

3A

0E9

329

29

0A4

784

29

0A4

330

11

044

785

11

044

331

04

011

786

04

011

332~715

04

010

787~260

04

010

716

06

017

261

06

017

717

17

05C

262

17

05C

718

2F

0BC

263

2F

0BC

719

3C

0EF

264

3C

0EF

720~782

3C

0F0

265~327

3C

0F0


表6.26数字复合(M)NTSC视频信号垂直消影期的锯齿脉冲值


PAL视频时序

一帧中除了有两行是1137个采样点之外,其它每行都是1135个采样点,所以每帧总709,379有采样点。图6.24所示是典型的行时序图。水平计数0位于有效视频的开始处,而水平计数948位于行消影的开始处。

是沿±U和±V(0o,90o,。180o和270o)轴采样的。采样相位位于第一场+V(90o)轴第1行的计数0处,

8比特突发值是95,64,32和64。突发切换导致突发峰值(32和95)和0峰值(64)采样移位。突发信封开始于水平计数1058处,持续40个时钟周期。

对于(M)NTSC,采样不是行连贯的,所以所以同步脉冲按行而改变。当突发采样的值是64时定义0-SCH相位。

 图6.24 数字复合(B,D,G,H,I)PAL信号的模拟数字时序关系



辅助数据

在消影期,辅助数据包用于传输如数字音频,字幕,图文数据信息。ITU-R BT.1364和SMPTE 291M描述了辅助数据格式。

辅助数据格式同数字分量视频的一样,在前面章节已讨论过。然而,使用一个字的辅助数据标志代替3字的同步码,10比特值3FCH。在TRS-ID后可能跟多个辅助数据标志,每个标志表示一个辅助数据包的开始。

辅助数据可能存在于一下字序号边界处出现(见图6.25~6.30)。

NTSC                        PAL

795~849                    972~1035            水平同步周期

795~815                    972~994              均衡脉冲周期

340~360                    404~426

795~260                    972~302              垂直同步周期

340~715                    404~869

10比特数据的000H~003H和3FCH~3FFH,8比特数据的00H和FFH,不被使用,它们用于定时信息。

 图6.25 (M)NTSC TRS-ID和水平消影期的辅助数据位置

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第10张图片

 图6.26(M)NTSC TRS-ID和垂直消影期的辅助数据位置

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第11张图片

 图6.27 NTSC TRS-ID和均衡脉冲周期的辅助数据位置

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第12张图片

 图6.28(B,D,G,H,I)PAL TRS-ID和水平消影期的辅助数据位置

 图6.29(B,D,G,H,I)PAL TRS-ID和垂直消影期的辅助数据位置

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第13张图片

 图6.30(B,D,G,H,I)PAL TRS-ID和均衡脉冲周期的辅助数据位置


25引脚并行接口

SMPTE 244M定义了基于27M 4:2:2(表6.19)数字分量视频的并行接口,除了不同时间差。这个接口被用来传送分辨率为SDTV的数字复合数据。8比特或10比特数据和一个4×FSC的时钟信号被传送。

信号电平兼容ECL差分平衡驱动器和接收器。驱动器必须有110Ω最大阻抗匹配;信号通过110Ω负载时电平峰峰值必须在0.8~2.0V。在接收端,传输线必须有110±10Ω阻抗。

时钟信号是4×FSC的方波,对于(M)NTSC时钟脉宽是35±5ns,对于(B,D,G,H,I)PAL时钟脉宽是28±5ns。数据发送发生在时钟信号上升沿的中点±5ns之间(如图6.31所示)。


为了允许电缆长度50~200米的可靠传输,接收器必须使用频率均衡。典型特性如图6.3所示。这个例子实现了电缆长度降至0是的操作。

 图6.31 并行接口数字符合信号波形


串行接口

并行格式能转换成SMPTE 259M的串行格式(如图6.32所示),这允许使用75Ω同轴电缆或光纤发送数据。这个接口将14.32或17.73MHz并行数据流转换成143或177Mbps的串行数据流。使用10×PLL(锁相环)将14.32或17.73MHz时钟倍频成143或177MHz时钟。

为了电缆互联,驱动端的阻抗匹配是75Ω,单端非平衡查分输出;信号峰值电平0.8V±10%,负载阻抗75Ω。接收端输入阻抗75Ω。

10比特数据串行化(LSB先发送),进行加扰和NRZI编码,算法为:

                   

这个算法和前面讨论的数字分量视频是一样的。对于8比特应用,串行化之前8比特数据需添加最低两位“0”。

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第14张图片

 图6.32 串行接口框图

 

串行化部分(图6.7)的输入信号使用正逻辑(高电压表示逻辑1,低电压表示逻辑0)。格式化的串行数据输出频率是40×FSC。

在接收端,通过检测TRS-ID序列来进行同步锁相。锁相环(PLL)对每个扫描行进行连续平滑调整确保这些序列被检测到并避免错位。4×FSC的采样时钟通过恢复时钟10×FSC 的10分频得到。串行数据经过频率均衡,解扰操作(图6.8)和解串操作。

TRS-ID

当使用串行接口时,一个被叫做TRS-ID的5字序列必须被插入数据视频流的水平同步时序中。TRS-ID仅存在于同步边沿后面,它指示水平过度,对于NTSC系统,占有行计数790~794,对于PAL为967~971。表6.27列举了TRS-ID的格式;图6.25~6.30显示了TRS-ID在(M)NTSC和(B,G,G,H,I)PAL视频信号中的位置。

 

D9(MSB)

D8

D7

D6

D5

D4

D3

D2

D1

D0

TRS字0

1

1

1

1

1

1

1

1

1

1

TRS字1

0

0

0

0

0

0

0

0

0

0

TRS字2

0

0

0

0

0

0

0

0

0

0

TRS字3

0

0

0

0

0

0

0

0

0

0

行号ID

EP

行号ID

注:EP = D0~D7的偶校验

表6.27 TRS-ID格式

行号ID字位于NTSC系统的水平计数794,PAL系统的水平计数971处,定义见表6.28所示。

 


D2

D1

D0

(M)NTSC

(B,D,G,H,I)PAL

0

0

0

行1~263场1

行1~313场1

0

0

1

行264~525场2

行314~625场2

0

1

0

行1~263场3

行1~313场3

0

1

1

行264~525场4

行314~625场4

 

 

 

 

 

1

0

0

没使用

行1~313场5

1

0

1

没使用

行314~625场6

1

1

0

没使用

行1~313场7

1

1

1

没使用

行314~625场8


 


D7~D3

(M)NTSC

(B,D,G,H,I)PAL

行号1~30[264~293]

行号1~30[314~343]

行号 31[294]

行号 31[344]

未使用

未使用


表6.28 行号ID字在水平计数794(NTSC)或971(PAL)

 

由于25Hz的水平同步的偏移,PAL系统每场的625~4行之一和313~317行之一需要重新设置TRS-ID的位置。除了重新设置TRS-ID的两行有1137个采样点之外,其它行的采样点数是1135个。另外两个采样点被计数为1135和1136,位于第一个有效图像采样点(采样0)之前。

由于25Hz的偏移,每一行的采样点都会有轻微前移。初始TRS-ID的位置应该是第一场的第一行或附近行。TRS-ID的位置一般在采样点967开始,但是与同步边沿的距离取决于25Hz的偏移。


专业视频传送接口
串行数据传送接口(SDTI

SMPTE 305M和ITU-R BT.1381定义了一用于设备之间的串行数据传送接口(SDTI)。物理层使用270Mbps或360Mbps的BT.656,BT.1302和SMPTE 259M的数字分量视频串行接口。图6.33所示是信号格式。

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分) - 生翼 - 生翼的博客

 图6.33 SDTI信号格式

 

一个53字的头插在EAV序列的后面,用于指示源地址,目的地址和数据格式。表6.29列出了头的内容。

负载数据由BT.1381和其他应用规范如SMPTE 326M定义。这里可能包含MPEG-2的程序流或传送流,DV流等,使用8比特字加偶校验和 ,或9比特字加 。

行号

行号的范围是1~525(480i系统)或1~625(576i系统)。L0是最低位。

行号CRC

行号CRC应用于从数据ID到行号结束的校验。它是一个18比特的数值,初始值被设置为0:

码字和地址标识(AAI)

4比特码字(CD3~CD0)指示负载的长度(位于SAV和EAV序列之间的用户数据):

0000     4:2:2YCbCr视频数据

0001     1440个负载字(用于270Mbps接口)

0010     1920个负载字(用于360Mbps接口)

1000     143Mbps数字复合视频

4比特地址标识(AAI)值,AAI3~AAI0,指示目的地址和源地址的格式:

0000     未指定格式

0001     IPv6地址

目的和源地址

这些指定目标设备和源设备地址。当所有地址位为0即AAI3~AAI0 = 0000时,使用通用地址。

块类型

块类型的值指示负载的段。BL7~BL6指示负载块结构:

 

 

10位数据

D9(MSB)

D8

D7

D6

D5

D4

D3

D2

D1

D0

辅助数据标志(AFD)

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

数据ID(DID)

EP

0

1

0

0

0

0

0

0

SDID

EP

0

0

0

0

0

0

0

1

计数器(DC)

EP

0

0

1

0

1

1

1

0

行号

EP

L7

L6

L5

L4

L3

L2

L1

L0

EP

0

0

0

0

0

0

L9

L8

行号CRC

C8

C7

C6

C5

C4

C3

C2

C1

C0

C17

C16

C15

C14

C13

C12

C11

C10

C9

码和地址

EP

AII3

AII2

AII1

AII0

CD3

CD2

CD1

CD0

目的地址

EP

DA7

DA6

DA5

DA4

DA3

DA2

DA1

DA0

EP

DA15

DA14

DA13

DA12

DA11

DA10

DA9

DA8

EP

DA127

DA126

DA125

DA124

DA123

DA122

DA121

DA120

源地址

EP

SA7

SA6

SA5

SA4

SA3

SA2

SA1

SA0

EP

SA15

SA14

SA13

SA12

SA11

SA10

SA9

SA8

EP

SA127

SA126

SA125

SA124

SA123

SA122

SA121

SA120

块类型

EP

BL7

BL6

BL5

BL4

BL3

BL2

BL1

BL0

负载CRC标志

EP

0

0

0

0

0

0

0

CRCF

保留

EP

0

0

0

0

0

0

0

0

保留

EP

0

0

0

0

0

0

0

0

保留

EP

0

0

0

0

0

0

0

0

保留

EP

0

0

0

0

0

0

0

0

保留

EP

0

0

0

0

0

0

0

0

头CRC校验

C8

C7

C6

C5

C4

C3

C2

C1

C0

C17

C16

C15

C14

C13

C12

C11

C10

C9

校验

从数据ID到最后一个的D0~D8的和;初值为0;进位忽略

注:EP = D0~D7的偶校验

表6.27 SDTI头结构

 

00         固定块长度,无ECC

01         固定块长度,有ECC

10         没分配

11         可变块长度

BL5~BL0指示固定块长度的段。BL7~BL0的值是11000001时,指示可变块长度。ECC的格式依赖于应用。

负载CRC标志

CRCF位指示负载数据之后CRC校验是否存在:

0                      无CRC

1                      有CRC

头CRC校验

头CRC校验开始于码字和地址标识字,直到保留数据字结束,计算所有10比特校验值。C0是最低位。它是18比特的数值,初始值设为全1:


高速数据串行传输接口(HD-SDTI


SMPTE 384M和ITU-R BT.1577定义了一用于设备之间的高速串行数据传送接口(HD-SDTI)。物理层使用1.485Gbps(1.485/1.001)的SMPTE 292M的数字分量视频串行接口。

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第15张图片

 图6.34 HD-SDTI信号格式。LN=行号(两10比特字),CRC=行号CRC校验(两10比特字)

图6.34所示是信号格式。两通道数据服用成单一HD-SDTI流,一路是74.25(或74.25/1.001)MHz的数据流占用Y数据空间,另一路74.25(或74.25/1.001)MHz的数据流占用CbCr数据空间

一个49字的头插在EAV序列的后面,用于指示源地址,目的地址和数据格式。表6.30列出了头的内容。

 

 

10位数据

D9(MSB)

D8

D7

D6

D5

D4

D3

D2

D1

D0

辅助数据标志(AFD)

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

数据ID(DID)

EP

0

1

0

0

0

0

0

0

SDID

EP

0

0

0

0

0

0

1

0

计数器(DC)

EP

0

0

1

0

1

0

1

0

码和地址

EP

AII3

AII2

AII1

AII0

CD3

CD2

CD1

CD0

目的地址

EP

DA7

DA6

DA5

DA4

DA3

DA2

DA1

DA0

EP

DA15

DA14

DA13

DA12

DA11

DA10

DA9

DA8

EP

DA127

DA126

DA125

DA124

DA123

DA122

DA121

DA120

源地址

EP

SA7

SA6

SA5

SA4

SA3

SA2

SA1

SA0

EP

SA15

SA14

SA13

SA12

SA11

SA10

SA9

SA8

EP

SA127

SA126

SA125

SA124

SA123

SA122

SA121

SA120

块类型

EP

BL7

BL6

BL5

BL4

BL3

BL2

BL1

BL0

负载CRC标志

EP

0

0

0

0

0

0

0

CRCF

保留

EP

0

0

0

0

0

0

0

0

保留

EP

0

0

0

0

0

0

0

0

保留

EP

0

0

0

0

0

0

0

0

保留

EP

0

0

0

0

0

0

0

0

保留

EP

0

0

0

0

0

0

0

0

头CRC校验

C8

C7

C6

C5

C4

C3

C2

C1

C0

C17

C16

C15

C14

C13

C12

C11

C10

C9

校验

从数据ID到最后一个的D0~D8的和;初值为0;进位忽略

注:EP = D0~D7的偶校验

表6.30 HD-SDTI头结构

 

负载数据由BT.1381和其他应用规范定义。这里可能包含MPEG-2的程序流或传送流,DV流等,使用8比特字加偶校验和 ,或9比特字加 。

码字和地址标识(AAI)

4比特码字(CD3~CD0)指示负载的长度(位于SAV和EAV序列之间的用户数据):

0000     4:2:2YCbCr视频数据

0001     1440个负载字

0010     1920个负载字

0011     1280个负载字

1000     143Mbps数字复合视频

1001     2304个负载字(扩展模式)

1010     2400个负载字(扩展模式)

1011     1440个负载字(扩展模式)

1100     1728个负载字(扩展模式)

1101     2880个负载字(扩展模式)

1110      3456个负载字(扩展模式)

1111      3600个负载字(扩展模式)

扩展模式延长了SAV序列时序,缩短了消影期,所以有效负载数据频率保持恒定的129.6(或129.6/1.001)MBps。

4比特地址标识(AAI)值,的格式和SDTI一样。

目的和源地址

这些指定目标设备和源设备地址的格式和SDTI一样。

块类型

    块的格式和SDTI一样。

头CRC校验

头CRC校验开始于数据DID,直到保留数据字结束,计算所有10比特校验值。C0是最低位。它是18比特的数值,初始值设为全1:


IC 分量接口

许多芯片之间的数字视频接口方案是有专业视频连接标准派生出来的。专业视频市场的芯片每个视频分量支持10或12比特的数据宽度,而典型的消费类视频市场芯片每个视频分量使用8比特数据。“BT.601”和“BT.656”是芯片最常用的接口。


YCbCr 8比特数据

Y通道的有效数据范围是10H~EBH。数据值大于EBH和小于10H的数据可用于处理。Cb和Cr通道的有效数据范围是10H~EBH。数据值大于EBH和小于10H的数据可用于处理。由于00H和FFH被用于定时信息,所以YCbCr数据不使用这些数据。

在消影期,Y数据的值是10H,CbCr数据的值是80H,除非有其它信息存在。


YCbCr 10比特数据

为了提高精度,专业视频解决方案典型使用10比特YCbCr数据。Y通道的有效数据范围是040H~3ACH。数据值大于3ACH和小于040H的数据可用于处理。Cb和Cr通道的有效数据范围是040H~3C0H。数据值大于3C0H和小于040H的数据可用于处理。为了避免于8比特系统连接时的定时错误,数据000H~003H和3FCH~3FFH没有被使用。

在消影期,Y数据的值是040H,CbCr数据的值是200H,除非有其它信息存在。


RGB 8比特数据

消费类解决方案典型使用8比特R’G’B’数据,使用的有效数据范围是10H~EBH(注意PC应用典型的数据范围是00H~FFH)。数据值大于EBH和小于10H的数据可用于处理。

在消影期,R’G’B’数据的值是10H,除非有其它信息存在。


RGB 10比特数据

为了提高精度,专业视频解决方案典型使用10比特R’G’B’数据,使用的有效数据的典型范围是040H~3ACH。数据值大于3ACH和小于040H的数据可用于处理。为了避免于8比特系统连接时的定时错误,数据000H~003H和3FCH~3FFH没有被使用。

在消影期,R’G’B’数据的值是040H,除非有其它信息存在。


“BT.601”视频接口

“BT.601”视频接口已使用多年,控制信号的命令和定时信息影响了相关的视频标准。支持的有效分辨率和时钟频率取决于视频标准和宽高比。

为了简化各种应用,视频设备通常支持多种数据格式。

视频数据格式


24比特4:4:4YCbCr数据格式如图6.35所示。Y,Cb和Cr都是8比特的,采样频率相同,每个采样时钟获得24比特数据。专业视频解决方案典型使用30比特接口,Y,Cb和Cr都是10比特流。Y0,Cb0和Cr0是最低有效位。

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第16张图片

 图6.35 24比特4:4:4 YCbCr数据格式


16比特4:2:2YCbCr数据格式如图6.36所示。Cb和Cr的采样频率是Y的一半,然后将他们复用。CbCr流的有效数据字开始于Cb采样点。专业视频解决方案典型使用20比特接口,Y和CbCr都是10比特流。

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第17张图片

 图6.36 16比特4:2:2 YCbCr数据格式

 

8比特4:2:2YCbCr数据格式如图6.37所示。它是将16比特的4:2:2YCbCr格式数据的Y和CbCr简单复合而成,采样频率为2倍时钟频率。YCbCr流的有效数据字开始于Cb采样点。专业视频解决方案典型使用10比特接口。

表6.31和6.32列举了15比特RGB,16比特RGB和24比特RGB视频格式。对于15比特RGB格式,未使用的比特位有时候用于键控(阿尔法)信息。 
R0,G0和B0是最低有效位。

《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分)_第18张图片

 图6.37 8比特4:2:2 YCbCr数据格式

 

24比特 RGB

16比特RGB (5,6,5)

16比特RGB (5,5,5)

24比特4:4:4YCbCr

16比特4:2:2YCbCr

8比特4:2:2YCbCr

R7

 

 

Cr7

 

 

R6

 

 

Cr6

 

 

R5

 

 

Cr5

 

 

R4

 

 

Cr4

 

 

R3

 

 

Cr3

 

 

R2

 

 

Cr2

 

 

R1

 

 

Cr1

 

 

R0

 

 

Cr0

 

 

G7

R4

-

Y7

Y7

Y7,Cb7,Cr7

G6

R3

R4

Y6

Y6

Y6,Cb6,Cr6

G5

R2

R3

Y5

Y5

Y5,Cb5,Cr5

G4

R1

R2

Y4

Y4

Y4,Cb4,Cr4

G3

R0

R1

Y3

Y3

Y3,Cb3,Cr3

G2

G5

R0

Y2

Y2

Y2,Cb2,Cr2

G1

G4

G4

Y1

Y1

Y1,Cb1,Cr1

G0

G3

G3

Y0

Y0

Y0,Cb0,Cr0

B7

G2

G2

Cb7

Cb7,Cr7

 

B6

G1

G1

Cb6

Cb6,Cr6

 

B5

G0

G0

Cb5

Cb5,Cr5

 

B4

B4

B4

Cb4

Cb4,Cr4

 

B3

B3

B3

Cb3

Cb3,Cr3

 

B2

B2

B2

Cb2

Cb2,Cr2

 

B1

B1

B1

Cb1

Cb1,Cr1

 

B0

B0

B0

Cb0

Cb0,Cr0

 

表6.31 YCbCr和RGB数据的16或24比特传输接口

 

控制信号

除了视频数据之外,还有4个控制信号:

      HSYNC#             水平同步

24比特 RGB

16比特RGB (5,6,5)

16比特RGB (5,5,5)

24比特4:4:4YCbCr

16比特4:2:2YCbCr

8比特4:2:2YCbCr

 

R4

-

 

Y7

 

 

R3

R4

 

Y6

 

 

R2

R3

 

Y5

 

 

R1

R2

 

Y4

 

 

R0

R1

 

Y3

 

 

G5

R0

 

Y2

 

 

G4

G4

 

Y1

 

 

G3

G3

 

Y0

 

R7

G2

G2

Cr7

Cb7,Cr7

 

R6

G1

G1

Cr6

Cb6,Cr6

 

R5

G0

G0

Cr5

Cb5,Cr5

 

R4

B4

B4

Cr4

Cb4,Cr4

 

R3

B3

B3

Cr3

Cb3,Cr3

 

R2

B2

B2

Cr2

Cb2,Cr2

 

R1

B1

B1

Cr1

Cb1,Cr1

 

R0

B0

B0

Cr0

Cb0,Cr0

 

G7

R4

-

Y7

Y7

Y7,Cb7,Cr7

G6

R3

R4

Y6

Y6

Y6,Cb6,Cr6

G5

R2

R3

Y5

Y5

Y5,Cb5,Cr5

G4

R1

R2

Y4

Y4

Y4,Cb4,Cr4

G3

R0

R1

Y3

Y3

Y3,Cb3,Cr3

G2

G5

R0

Y2

Y2

Y2,Cb2,Cr2

G1

G4

G4

Y1

Y1

Y1,Cb1,Cr1

G0

G3

G3

Y0

Y0

Y0,Cb0,Cr0

B7

G2

G2

Cb7

Cb7,Cr7

 

B6

G1

G1

Cb6

Cb6,Cr6

 

B5

G0

G0

Cb5

Cb5,Cr5

 

B4

B4

B4

Cb4

Cb4,Cr4

 

B3

B3

B3

Cb3

Cb3,Cr3

 

B2

B2

B2

Cb2

Cb2,Cr2

 

B1

B1

B1

Cb1

Cb1,Cr1

 

B0

B0

B0

Cb0

Cb0,Cr0

 

表6.31 YCbCr和RGB数据的32比特传输接口

 

      VSYNC#             垂直同步

      BLANK#             消影

      CLK                    1×或2×采样时钟

对于8比特和10比特4:2:2YCbCr数据格式,CLK是2×采样时钟。对于其它数据格式,CLK是1×采样时钟。对于发送端,控制信号和视频数据是跟在时钟的上升沿之后送出。对于接收端,控制信号和时钟是在时钟上升沿采样的。

当BLANK#信号是低电平时,有效的R’G’B’或YCbCr视频数据存在。

在每个扫描行的消影期HSYNC#信号有效,它的前沿指示一个新行的开始。HSYNC#的有效时间长度通常和视频标准规定的相同。

在每个场或帧消影期VSYNC#信号有效,它的前沿指示一个新场或帧的开始。HSYNC#的有效行数通常和视频标准规定的相同。


对于隔行扫描视频,如果VSYNC#和HSYNC#的前沿重合,则代表场1。如果VSYNC#前沿在行中部出现,则是场2。对于非隔行扫描视频,VSYNC#指示一帧新视频的开始。图6.38显示了典型VSYNC#和HSYNC#的关系。

 图6.38 典型VSYNC#和HSYNC#的关系(无缩放)

 

8/10比特接口的典型应用是SDTV系统。为了支持HDTV,有些传输数据和控制信号的设计采用时钟双沿促发(DDR)。

接收端的考虑

假设每行和场消影期的采样点数不定,否则这个应用可能不适合所有的发送源。

为了确保各种发送源之间的兼容性,水平计数应该在HYSNC#的前沿被复位,而不是BLANK#信号的后沿。

为了应对现实世界的发送源,接收端一用一个“窗口”检测是场1还是场2。例如,VSYNC#的前沿是在HSYNC#前沿的±64个1×时钟周期内,表示长1。否则是场2.

一些视频发送源用8比特小于10H的Y数据指示同步定时信息。然而,大部分视频集成电路(ICs)都不是这么做的。另外,为了允许现实世界的视频和测试信号快速通过达到最小的中断,许多集成电路允许Y数据在有效视频期间的值小于10H。这样,如果接收端设计成认为同步定时信号存在于Y通道将不能正常工作。

你可能感兴趣的:(《视频解密》中文版(第四版) 第六章 数字视频接口(第二部分))