单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。
一.最短路径的最优子结构性质
该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。
假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。
二.Dijkstra算法
由上述性质可知,如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点。那么(Vi...Vk)也必定是从i到k的最短路径。为了求出最短路径,Dijkstra就提出了以最短路径长度递增,逐次生成最短路径的算法。譬如对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+matrix[i][j]}。根据这种思路,
假设存在G=<V,E>,源顶点为V0,U={V0},dist[i]记录V0到i的最短距离,path[i]记录从V0到i路径上的i前面的一个顶点。
1.从V-U中选择使dist[i]值最小的顶点i,将i加入到U中;
2.更新与i直接相邻顶点的dist值。(dist[j]=min{dist[j],dist[i]+matrix[i][j]})
3.知道U=V,停止。
代码实现:
Dijkstra算法详解:
在解决单源点最短路径的问题时,常常用到经典的Dijkstra算法,其算法的本质思想是: 按路径长度递增依次产生最短路径。
下面给出算法的大致流程:
1.初始化所有结点并将起始点设为标记,进入以下循环
2.在到达某点的最短路径中找最小且未标记的点(可以用一维数组表示)
如:
数组下标:0 1 2 3 4 5
Len :- 0 5 10 2 -
这个数组表示 1号节点为初始节点,1号节点到达2号节点的最短路径为5,到3号为10,无法到达5号(具体可以以较大的数表示其路径)。
从中找到一个未标记且Len最短的一个,未标记用另一数组记录
如:
数组下标:0 1 2 3 4 5
标记 :0 1 0 0 1 0
此数组表示从初始节点到达4号节点的最短路径已找到
从以上两个数组中可以得出:此次循环找到的点为2号节点,进入下一步
3.标记找到的点,以此标记点为中间点重新计算所有未标记点的最短路径(更新最短路径表)
4.循环1.2步至n-1次(n为顶点数,若最后还有未被标记的,说明无法到达此点)
下面是核心代码:
<span style="font-size:32px;color:#3333ff;"> while(count<n) { tempmin=INFINITE; for(i=1;i<=n;i++) { if(in[i]==0&&Len[i]<tempmin) //find the smallest one { tempmin=Len[i]; si=i; } } in[si]=1; count++; for(i=1;i<=n;i++) //updata the length { if(in[i]==0&&(tempmin+mGraph.matrix[si][i])<Len[i]) { Len[i]=tempmin+mGraph.matrix[si][i]; } } }</span>
下面用一个实例来具体说明:
若有这样一张有向图(此图为《数据结构》严蔚敏 p188页,书中没有详细讲解,现以此为实例)
V0-V5 共6个节点,节点间路径已标出,现要求从V0到其余各节点的最短路径;
有上面的算法流程可知,在使用Dijkstra算法时需要几个结构来保存我们想要的信息:
1.保存这张图的结构体
2.记录V0到其余各节点最短路径的数组(这里设为Len[n+1])
3.记录某节点是否已找到最短路径的数组(这里设为in[n+1])
接下来就是算法实现部分:
1.标记V0 -- in[1]=1 初始化 Len[]={INFINITE , 0 , INFINITE , 10, INFINITE , 30 , 100} 这里数组首元素未用到,数组下标从1开始表示V0以此类推
2.第一次循环与V0相邻的有V2、V4、V5,其中V2距离最短为10,标记V2,并且以V2为中间点(路径为V0->V2->Vx)更新最短路表,此时V3被更新为10+50=60,。
3.进入第二次循环,此时未被标记的有V1、V3、V4、V5,,其中从V0到这些的临时最短路分别为INFINITE、60、30、100,从中找到最小的即V4,将V4标记为1,以V4为中间点(路径为V0->V4->Vx)更新最短路表,此时V3被更新为50,V5被更新为90。
4.进入第三次循环,此时未被标记的有V1、V3、V5,其中临时最短路分别为INFINITE、50、90,从中找到最小的即V3,将V3标记为1,以V3为中间点(路径为V0->V4->V3->Vx)更新最短路表,此时V5被更新成60。
5.进入第四次循环,此时未被标记的有V1、V5,其中临时最短路分别为INFINITE、60,找到V5,标记为1,以V5为中间点更新最短路表,此时没有元素被更新
6.进入第五次循环,这次循环没找到任何东西
7.退出循环,Len表中即为V0到其余各个节点的最短路径。
以上就是Dijkstra算法最基本的思想,当然,在找最短路时我们常常会需要求出到达某点的最短路径,那么下面,我们就来看看要怎样记录下到达某点的最短路径:
在Dijkstra算法的前提下加入查询最短路径其实很简单,只要在每次更新最短路时保存在该顶点的父节点序号即可,最后输出时回退中间节点然后用堆栈输出即可
最后直接给出完整代码(写的很一般,还望指教):
<span style="font-size:32px;color:#3333ff;">#include <stdio.h> #include <string.h> #define MAX_LEN 100 #define INFINITE 1000 typedef struct graph { int nodenum; int edgenum; int matrix[MAX_LEN][MAX_LEN]; }Graph; typedef struct stack { int bottom; int top; int printout[MAX_LEN]; }mstack; int in[MAX_LEN]; int Len[MAX_LEN]; int path[MAX_LEN]; void InitStack(mstack *s) { s->bottom=0; s->top=0; memset(s->printout,0,sizeof(int)*MAX_LEN); } void push(mstack *s,int m) { s->printout[s->top++]=m; } int pop(mstack *s) { return s->printout[--s->top]; } void InitGraph(Graph *g,int n) { int i,j; for(i=1;i<=n;i++) for(j=1;j<=n;j++) { if(i==j)g->matrix[i][j]=0; else g->matrix[i][j]=INFINITE; } for(i=1;i<=n;i++) { in[i]=0; Len[i]=INFINITE; path[i]=0; } } int main() { int n,m,i,A,B,templen,count,min,tempmin,si,temp; while(scanf("%d %d",&n,&m)) { count=0; Graph mGraph; mGraph.edgenum=m; mGraph.nodenum=n; InitGraph(&mGraph,n); for(i=0;i<m;i++) { scanf("%d %d %d",&A,&B,&templen); mGraph.matrix[A][B]=templen; } in[1]=1; path[1]=1; //sava path Len[1]=0; for(i=2;i<=n;i++) { Len[i]=mGraph.matrix[1][i]; //Init the len if(Len[i]!=INFINITE)path[i]=1; } min=0; si=1; while(count<n-1) { tempmin=INFINITE; for(i=1;i<=n;i++) { if(in[i]==0&&Len[i]<tempmin) //find the smallest one { tempmin=Len[i]; si=i; } } in[si]=1; for(i=1;i<=n;i++) //updata the length { if(in[i]==0&&(tempmin+mGraph.matrix[si][i])<Len[i]) { Len[i]=tempmin+mGraph.matrix[si][i]; path[i]=si; } } count++; } mstack s; for(i=1;i<=n;i++) { temp=i; InitStack(&s); if(path[temp]==0) { printf("no path\n"); continue; } while(path[temp]!=1) { push(&s,path[temp]); temp=path[temp]; } printf("1-->"); while(s.bottom!=s.top) { printf("%d-->",pop(&s)); } printf("%d min length is %d\n",i,Len[i]); } } return 0; }</span>
====================================================================
Dijkstra算法
1.定义概览
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。
问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)
2.算法描述
1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:
a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
执行动画过程如下图
3.算法代码实现:
const int MAXINT = 32767; const int MAXNUM = 10; int dist[MAXNUM]; int prev[MAXNUM]; int A[MAXUNM][MAXNUM]; void Dijkstra(int v0) { bool S[MAXNUM]; // 判断是否已存入该点到S集合中 int n=MAXNUM; for(int i=1; i<=n; ++i) { dist[i] = A[v0][i]; S[i] = false; // 初始都未用过该点 if(dist[i] == MAXINT) prev[i] = -1; else prev[i] = v0; } dist[v0] = 0; S[v0] = true; for(int i=2; i<=n; i++) { int mindist = MAXINT; int u = v0; // 找出当前未使用的点j的dist[j]最小值 for(int j=1; j<=n; ++j) if((!S[j]) && dist[j]<mindist) { u = j; // u保存当前邻接点中距离最小的点的号码 mindist = dist[j]; } S[u] = true; for(int j=1; j<=n; j++) if((!S[j]) && A[u][j]<MAXINT) { if(dist[u] + A[u][j] < dist[j]) //在通过新加入的u点路径找到离v0点更短的路径 { dist[j] = dist[u] + A[u][j]; //更新dist prev[j] = u; //记录前驱顶点 } } } }
4.算法实例
先给出一个无向图
用Dijkstra算法找出以A为起点的单源最短路径步骤如下
Floyd算法
1.定义概览
Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。
2.算法描述
1)算法思想原理:
Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)
从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
2).算法描述:
a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。
3).Floyd算法过程矩阵的计算----十字交叉法
方法:两条线,从左上角开始计算一直到右下角 如下所示
给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点
相应计算方法如下:
最后A3即为所求结果
3.算法代码实现
typedef struct { char vertex[VertexNum]; //顶点表 int edges[VertexNum][VertexNum]; //邻接矩阵,可看做边表 int n,e; //图中当前的顶点数和边数 }MGraph; void Floyd(MGraph g) { int A[MAXV][MAXV]; int path[MAXV][MAXV]; int i,j,k,n=g.n; for(i=0;i<n;i++) for(j=0;j<n;j++) { A[i][j]=g.edges[i][j]; path[i][j]=-1; } for(k=0;k<n;k++) { for(i=0;i<n;i++) for(j=0;j<n;j++) if(A[i][j]>(A[i][k]+A[k][j])) { A[i][j]=A[i][k]+A[k][j]; path[i][j]=k; } } }
算法时间复杂度:O(n3)
=========================================================================
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。
初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。
例如,对下图中的有向图,应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。
主题好好理解上图!
以下是具体的实现(C/C++):
#include <iostream>
#include<fstream>
using namespace std;
const int maxnum = 100;
const int maxint = 999999;
void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum])
{
bool s[maxnum]; // 判断是否已存入该点到S集合中
for(int i=1; i<=n; ++i)
{
dist[i] = c[v][i];
s[i] = 0; // 初始都未用过该点
if(dist[i] == maxint)
prev[i] = 0;
else
prev[i] = v;
}
dist[v] = 0;
s[v] = 1;
// 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
// 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
for(i=2; i<=n; ++i)
{
int tmp = maxint;
int u = v;
// 找出当前未使用的点j的dist[j]最小值
for(int j=1; j<=n; ++j)
if((!s[j]) && dist[j]<tmp)
{
u = j; // u保存当前邻接点中距离最小的点的号码
tmp = dist[j];
}
s[u] = 1; // 表示u点已存入S集合中
// 更新dist
for( j=1; j<=n; ++j)
if((!s[j]) && c[u][j]<maxint)
{
int newdist = dist[u] + c[u][j];
if(newdist < dist[j])
{
dist[j] = newdist;
prev[j] = u;
}
}
}
}
void searchPath(int *prev,int v, int u)
{
int que[maxnum];
int tot = 1;
que[tot] = u;
tot++;
int tmp = prev[u];
while(tmp != v)
{
que[tot] = tmp;
tot++;
tmp = prev[tmp];
}
que[tot] = v;
for(int i=tot; i>=1; --i)
if(i != 1)
cout << que[i] << " -> ";
else
cout << que[i] << endl;
}
int main()
{
freopen("input.txt", "r", stdin);
// 各数组都从下标1开始
int dist[maxnum]; // 表示当前点到源点的最短路径长度
int prev[maxnum]; // 记录当前点的前一个结点
int c[maxnum][maxnum]; // 记录图的两点间路径长度
int n, line; // 图的结点数和路径数
// 输入结点数
cin >> n;
// 输入路径数
cin >> line;
int p, q, len; // 输入p, q两点及其路径长度
// 初始化c[][]为maxint
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j)
c[i][j] = maxint;
for(i=1; i<=line; ++i)
{
cin >> p >> q >> len;
if(len < c[p][q]) // 有重边
{
c[p][q] = len; // p指向q
c[q][p] = len; // q指向p,这样表示无向图
}
}
for(i=1; i<=n; ++i)
dist[i] = maxint;
for(i=1; i<=n; ++i)
{
for(int j=1; j<=n; ++j)
printf("%8d", c[i][j]);
printf("\n");
}
Dijkstra(n, 1, dist, prev, c);
// 最短路径长度
cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl;
// 路径
cout << "源点到最后一个顶点的路径为: ";
searchPath(prev, 1, n);
return 0;
}
/*
输入数据:
5
7
1 2 10
1 4 30
1 5 100
2 3 50
3 5 10
4 3 20
4 5 60
输出数据:
999999 10 999999 30 100
10 999999 50 999999 999999
999999 50 999999 20 10
30 999999 20 999999 60
100 999999 10 60 999999
源点到最后一个顶点的最短路径长度: 60
源点到最后一个顶点的路径为: 1 -> 4 -> 3 -> 5
*/
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 13799 Accepted Submission(s): 5874
#include<iostream> #include<stdio.h> #include<iomanip> using namespace std; #define N 10000 #define MAX 100000099 int a[N][N]; int dist[N]; void input (int n,int m) { int p,q,len,i,j; for( i=1;i<=n;i++) { for(j=1;j<=n;j++) a[i][j]=MAX; dist[i]=MAX; } for(i=0;i<m;i++) { cin>>p>>q>>len; if(len<a[p][q]) { a[p][q]=len; a[q][p]=len; } } } void dijkstra(int n) { int s[N],newdist; for(int i=1;i<=n;i++) { dist[i]=a[1][i]; s[i]=0; } dist[1]=0; s[1]=1; for(i=2;i<=n;i++) { int j,tem=MAX; int u=1; for(j=2;j<=n;j++) if(!s[j]&&dist[j]<tem) { u=j; tem=dist[j]; } s[u]=1; for(j=2;j<=n;j++) { if(!s[j]&&a[u][j]<MAX) { newdist=dist[u]+a[u][j]; if(newdist<dist[j]) dist[j]=newdist; } } } } int main() { int n,m; while(scanf("%d%d",&n,&m),m||n) { input(n,m); dijkstra(n); cout<<dist[n]<<endl; } return 0; }
//又捡回来了 #include <iostream> #include<string.h> using namespace std; const int Nmax = 104; int a[Nmax][Nmax]; bool visit[Nmax]; int prev[Nmax]; int n; void dijkstra(int v)//不需要打印路径的dijkstra { int cnt=n-1,j,mindis,minid; memset(visit,0,sizeof(visit)/sizeof(bool)); for(j=1; j<=n; j++) { if(a[v][j]==INT_MAX||v==j) prev[j]=0; //路径打印停止的标志 else prev[j]=v; } visit[v]=1; while(cnt--) //n-1次就可以将所有定点加入S中 { //找到距离v点最近的点k mindis=INT_MAX; for(j=1; j<=n; j++) { if(!visit[j]&&a[v][j]<mindis) { mindis=a[v][j]; minid=j; } } visit[minid]=1; //更新集合U中的点 for(j=1; j<=n; j++) { //a[v][minid]+a[minid][j]<a[v][j]会溢出尼玛!!装逼失败早知道不用INT_MAX if(!visit[j]&&a[v][minid]<INT_MAX&&a[minid][j]<INT_MAX&&a[v][minid]+a[minid][j]<a[v][j]) { a[v][j]=a[v][minid]+a[minid][j]; prev[j]=minid; } } } } void printPath(int u) { int path[Nmax]; int tmp=u; while(tmp) { path[prev[tmp]]=tmp; tmp=prev[tmp]; } while(tmp!=u) { cout<<path[tmp]; tmp=path[tmp]; if(tmp!=u) cout<<"->"; } cout<<endl; }int main() { int i,j,w,m; while(cin>>n>>m,n||m) { for(i=1; i<=n; i++) for(j=1; j<=n; j++) { if(i==j) a[i][j]=0; else a[i][j]=INT_MAX; } while(m--) { cin>>i>>j>>w; //a[i][j]=w<a[i][j]?w:a[i][j];有向图重边考虑 a[i][j]=a[j][i]=w<a[i][j]?w:a[i][j];//无向图重边考虑 } dijkstra(1); cout<<a[1][n]<<endl; //printPath(n); } return 0; }