Deploy and Use the Splunk App for HadoopOps

Metrics collection with HadoopOps

In this topic we talk about how to set up your Hadoop deployment to correctly collect metrics with the Splunk app for HadoopOps. We identify some of the root causes of problems you can face and give you the information you need to resolve the problems. Metrics collection issues can result from:

  • Using metrics systems that do not work well with the Hadoop version you are using.
  • Correctly configuring your inputs to collect metrics - using monitored file input versus scripted inputs (via the REST API).
  • Not having that the scripted inputs or metrics files enabled.
  • Not being able to get data from the REST endpoint - Check that the hadoop-metrics.properties file is set up correctly and that FileContext is in place to log metrics to files).

Hadoop Metrics

Hadoop exposes metrics that can be used to measure performance and events related to Hadoop services. These metrics are a valuable resource for monitoring performance, monitoring cluster health, and debugging system problems. You can configure Hadoop daemons to collect this data and handle it using plug-ins. The Hadoop daemons NameNode, SecondaryNameNode, DataNode, JobTracker, and TaskTracker all expose runtime metrics. The Metrics1 system is used by Apache Hadoop 0.20.0 and CDH3 (which is based on version 0.20.2).The new Metrics2 system for Hadoop replaces the previous Metrics1 system. This new system supports:

  • Sending metrics to multiple plug-ins.
  • Filtering.
  • More complete support for JMX (Java Management Extension).
  • Is included in Apache Hadoop 0.20.205 and later versions.

Hadoop version and metrics system reference

When setting up Hadoop metrics collection it is important to use a metrics system and servlet that works with the Hadoop version you have installed. The following table lists the supported metrics systems and servlets for the specified Hadoop versions.

Hadoop version and metrics system reference

Hadoop version Metrics system servlets
Apache Hadoop 0.20.2 metrics1 metrics
CDH3u1+ metrics1 metrics and jmx
Apache Hadoop 0.20.203 metrics2 not available
Apache Hadoop 0.20.205 metrics2 jmx
Apache Hadoop 1.1x (HDP 1.2) metrics2 jmx
Apache Hadoop 2.0x (CDH4 wiht YARN) metrics2 jmx
CDH4 with MR1 metrics1 JobTracker/TaskTracker - metrics and jmx
CDH4 with MR1 metrics2 HDFS - mmx

Note: CDH refers to Cloudera's Distribution Including Apache Hadoop. HDP refers to the Hortonworks Data Platform.

HadoopOps and Hadoop Metrics

You can collect metrics data and feed it into Splunk using the Splunk app for HadoopOps. You can collect metrics in one of the following two ways:

  • Use scripted inputs (via the REST API): In this case you query the REST endpoints provided by the web server embedded in each service daemon. There are two servlets providing the REST interface:
    • The original metrics servlet at /metrics . The metrics servlet only works with metrics1.
    • The newer JMX JSON servlet at /jmx. The JMX servlet works with metrics1 and metrics2. JMX JSON servlet is the preferred method, however, for HadoopOps, we recommend that you configure metrics collection using/metrics with the old metrics, metrics1, system due to limited support of JMX in metrics1.
  • Use monitored files: Monitor the metrics file service daemons configured to write out the logs.
    • Hadoop daemons can be configured to write metrics data out to files periodically. HadoopOps can collect the metrics data by monitoring these files. We recommend using the REST interface as there is an issue with Hadoop output metrics to file.

Send Hadoop metrics to Splunk

To collect metrics in Splunk as scripted inputs, configure your input files to use the correct ports. The following table lists the default ports that the Hadoop daemons use.

Hadoop default web server ports

Service Default port
namenode 50070
datanode 50075
jobtracker 50030
tasktracker 50060

How to setup HadoopOps Metrics Collection

To set up HadoopOps to collect metrics:

  1. Check the Hadoop version you have installed and determine the metrics system you're using for that version.
    1. Apache Hadoop version 0.20.2 and earlier versions rely on the metrics1 system. Apache Hadoop version 0.20.203 and later ship with the metrics2 system. See the Hadoop version and metrics system reference table.
  2. Configure Hadoop metrics output. See the the instructions below.
  3. Send Hadoop metrics to Splunk (using scripted inputs or file inputs)
    1. Follow add metrics scripted input or monitor metrics files and setup the metrics data input. To collect metrics as scripted inputs, see the "Hadoop default web server ports" reference table for a list of default ports that the hadoop daemons use.
    2. Tell splunkd to reload the configurations. Run the following command:
    curl -k https://<host>:<port>//services/data/inputs/script/_reload
  4. Verify that you are collecting metrics in HadoopOps. Check that all data is loaded in the Splunk App for HadoopOps and that none of the associated gauges are missing data.
In the Search app, run the following command:
`hadoop_metrics`
The corresponding events are displayed for collecting metrics from whatever system you set up - scripted inputs (via the REST API) endpoints or file monitoring inputs.

Examples of different metrics configurations

The following examples show how you can configure Hadoop and Splunk to collect metrics data for mapping to the Splunk App for HadoopOps.

Example: Configure Hadoop metrics using metrics1

This is a sample <HADOOP_CONF_DIR>/hadoop-metrics.properties file showing the configuration for use with the metrics1 system.

dfs.class = org.apache.hadoop.metrics.spi.NoEmitMetricsContext

mapred.class = org.apache.hadoop.metrics.spi.NoEmitMetricsContext

jvm.class = org.apache.hadoop.metrics.spi.NoEmitMetricsContext

#ugi.class = org.apache.hadoop.metrics.spi.NoEmitMetricsContext
dfs.class = org.apache.hadoop.metrics.file.FileContext
dfs.period=10
dfs.fileName=/tmp/dfsmetrics.log

mapred.class = org.apache.hadoop.metrics.file.FileContext
mapred.period=10
mapre.fileName=/tmp/mapredmetrics.log

jvm.class = org.apache.hadoop.metrics.file.FileContext
jvm.period=10
jvm.fileName=/tmp/jvmmetrics.log

#ugi.class = org.apache.hadoop.metrics.file.FileContext
#ugi.period=10
#ugi.fileName=/tmp/ugimetrics.log

Example: Configure Hadoop metrics using metrics2

This is a sample <HADOOP_CONF_DIR>/hadoop-metrics2.properties file showing the configuration for use with the metrics2 system.

*.sink.file.class=org.apache.hadoop.metrics2.sink.FileSink
*.period=10

namenode.sink.file.filename=namenode-metrics.out

datanode.sink.file.filename=datanode-metrics.out

jobtracker.sink.file.filename=jobtracker-metrics.out

tasktracker.sink.file.filename=tasktracker-metrics.out

maptask.sink.file.filename=maptask-metrics.out

reducetask.sink.file.filename=reducetask-metrics.out

Example: Use a scripted input and the metrics1 system

This is a sample Splunk_TA_hadoopops/local/inputs.conf file showing how to collect metrics as a scripted input using the metrics1 system. Use the host ip address and port number specific to your cluster configuration.

# namenode
[script://./bin/hadoopmon_metrics.sh http://127.0.0.1:50070/metrics]
disabled = 0
interval = 10
sourcetype = hadoop_metrics
index = hadoopmon_metrics

# secondary_namenode
#[script://./bin/hadoopmon_metrics.sh http://127.0.0.1:50090/metrics]
#disabled = 0
#interval = 10
#sourcetype = hadoop_metrics
#index = hadoopmon_metrics

# datanode
[script://./bin/hadoopmon_metrics.sh http://127.0.0.1:50075/metrics]
disabled = 0
interval = 10
sourcetype = hadoop_metrics
index = hadoopmon_metrics

# jobtracker
[script://./bin/hadoopmon_metrics.sh http://127.0.0.1:50030/metrics]
disabled = 0
interval = 10
sourcetype = hadoop_metrics
index = hadoopmon_metrics

# tasktracker
[script://./bin/hadoopmon_metrics.sh http://127.0.0.1:50060/metrics]
disabled = 0
interval = 10
sourcetype = hadoop_metrics
index = hadoopmon_metrics

Example: Use a scripted input and the metrics2 system

This is a sample Splunk_TA_hadoopops/local/inputs.conf file showing how to collect metrics as a scripted input using the metrics2 system. Use the host ip address and port number specific to your cluster configuration.

# namenode
[script://./bin/hadoopmon_metrics.sh http://127.0.0.1:50070/jmx]
disabled = 0
interval = 10
sourcetype = hadoop_metrics
index = hadoopmon_metrics

# secondary_namenode
#[script://./bin/hadoopmon_metrics.sh http://127.0.0.1:50090/jmx]
#disabled = 0
#interval = 10
#sourcetype = hadoop_metrics
#index = hadoopmon_metrics

# datanode
[script://./bin/hadoopmon_metrics.sh http://127.0.0.1:50075/jmx]
disabled = 0
interval = 10
sourcetype = hadoop_metrics
index = hadoopmon_metrics

# jobtracker
[script://./bin/hadoopmon_metrics.sh http://127.0.0.1:50030/jmx]
disabled = 0
interval = 10
sourcetype = hadoop_metrics
index = hadoopmon_metrics

# tasktracker
[script://./bin/hadoopmon_metrics.sh http://127.0.0.1:50060/jmx]
disabled = 0
interval = 10
sourcetype = hadoop_metrics
index = hadoopmon_metrics

Note: For jmx endpoint, you can add 'qry?Hadoop:*'. Some versions use'qry?hadoop:*' after '/jmx' to filter out non-Hadoop metrics.

Example: Use a file input and the metrics1 system

This is a sample Splunk_TA_hadoopops/local/inputs.conf file showing how to collect metrics using a file input and the metrics1 system.

[monitor://<absolute_path_to_dfs_metrics_output_file>]
disabled = 0
sourcetype=hadoop_metrics
index=hadoopmon_metrics

[monitor://<absolute_path_to_mapred_metrics_output_file>]
disabled = 0
sourcetype=hadoop_metrics
index=hadoopmon_metrics

[monitor://<absolute_path_to_jvm_metrics_output_file>]
disabled = 0
sourcetype=hadoop_metrics
index=hadoopmon_metrics

Example: Use a file input and the metrics2 system

This is a sample Splunk_TA_hadoopops/local/inputs.conf file showing how to collect metrics using a file input and the metrics2 system.

[monitor://<absolute_path_to_namenode_metrics_output_file>]
disabled = 0
sourcetype=hadoop_metrics
index=hadoopmon_metrics

[monitor://<absolute_path_to_datanode_metrics_output_file>]
disabled = 0
sourcetype=hadoop_metrics
index=hadoopmon_metrics

[monitor://<absolute_path_to_jobtracker_metrics_output_file>]
disabled = 0
sourcetype=hadoop_metrics
index=hadoopmon_metrics

[monitor://<absolute_path_to_datanode_metrics_output_file>]
disabled = 0
sourcetype=hadoop_metrics
index=hadoopmon_metrics

[monitor://<absolute_path_to_tasktracker_metrics_output_file>]
disabled = 0
sourcetype=hadoop_metrics
index=hadoopmon_metrics

[monitor://<absolute_path_to_maptask_metrics_output_file>]
disabled = 0
sourcetype=hadoop_metrics
index=hadoopmon_metrics

[monitor://<absolute_path_to_reducetask_metrics_output_file>]
disabled = 0
sourcetype=hadoop_metrics
index=hadoopmon_metrics

Sample metrics data

If you have correctly configured metrics collection in the Splunk for HadoopOps, the metrics data will populate the Dashboards. The events displayed differ depending on the collection method you have configured for your app. The following examples show sample data for each of the following configurations:

  • endpoint /metrics
  • endpoint /jmx
  • file

If the data does not come in as expected, then:

  • Revisit the instructions in Setup HadoopOps Metrics Collection.
  • See the topic Troubleshooting for an example showing the expected metrics output and recommendations on how to solve problems.

Example: Sample data for/metrics endpoint

Node Type Example
name node context=dfs,sub_context=namenode,hostName=xxx,sessionId=,AddBlockOps=11,CreateFileOps=12,...
datanode context=dfs,sub_context=datanode,hostName=xxx,sessionId=,blockChecksumOp_avg_time=0,...
jobtracker context=mapred,sub_context=jobtracker,hostName=xxx,sessionId=,blacklisted_maps=0,...
tasktracker context=mapred,sub_context=tasktracker,hostName=xxx,sessionId=,failedDirs=0,mapTaskSlots=1,...

Example: Sample data for/jmx endpoint

Node Type Example
name node { "beans" : [ { "name" : "Hadoop:service=NameNode,name=MetricsSystem,sub=Stats", "modelerType" : "MetricsSystem,sub=Stats", "tag.context" : "metricssystem", "tag.hostName" : "xxx", ... }, { "name" : "Hadoop:service=NameNode,name=FSNamesystemMetrics", "modelerType" : "FSNamesystemMetrics", "tag.context" : "dfs", "tag.hostName" : "xxx", "FilesTotal" : 8683, "BlocksTotal" : 8659, "CapacityTotalGB" : 288, "CapacityUsedGB" : 111, "CapacityRemainingGB" : 153, ...}, ...] }
datanode { "beans" : [ { "name" : "Hadoop:service=DataNode,name=DataNode", "modelerType" : "DataNode", "tag.context" : "dfs", "tag.sessionId" : null, "tag.hostName" : "xxx", "bytes_written" : 33654041158, "bytes_read" : 3063741372, "blocks_written" : 16858, "blocks_read" : 4044, ... }, ... ] }
jobtracker { "beans" : [ { "name" : "Hadoop:service=JobTracker,name=JobTrackerMetrics", "modelerType" : "JobTrackerMetrics", "tag.context" : "mapred", "tag.sessionId" : "", "tag.hostName" : "xxx", "map_slots" : 8, "reduce_slots" : 8, "blacklisted_maps" : 0, "blacklisted_reduces" : 0, "maps_launched" : 13064, "maps_completed" : 13047, "maps_failed" : 17, "reduces_launched" : 8, "reduces_completed" : 8, "reduces_failed" : 0, "jobs_submitted" : 9, "jobs_completed" : 9, ... }, { "name" : "Hadoop:service=JobTracker,name=QueueMetrics,q=default", "modelerType" : "QueueMetrics,q=default", "tag.context" : "mapred", "tag.sessionId" : "", "tag.Queue" : "default", "tag.hostName" : "xxx", "maps_launched" : 13064, "maps_completed" : 13047, "maps_failed" : 17, "reduces_launched" : 8, "reduces_completed" : 8, "reduces_failed" : 0, "jobs_submitted" : 9, "jobs_completed" : 9, ... }, ...] }
tasktracker { "beans" : [ { "name" : "Hadoop:service=TaskTracker,name=TaskTrackerMetrics", "modelerType" : "TaskTrackerMetrics", "tag.context" : "mapred", "tag.sessionId" : "", "tag.hostName" : "xxx", "maps_running" : 0, "reduces_running" : 0, "mapTaskSlots" : 2, "reduceTaskSlots" : 2, "failedDirs" : 0, "tasks_completed" : 78, "tasks_failed_timeout" : 0, "tasks_failed_ping" : 0 }, { "name" : "Hadoop:service=TaskTracker,name=ShuffleServerMetrics", "modelerType" : "ShuffleServerMetrics", "tag.context" : "mapred", "tag.sessionId" : "", "tag.hostName" : "xxx", "shuffle_handler_busy_percent" : 0.0, "shuffle_output_bytes" : 4689439468, "shuffle_failed_outputs" : 0, "shuffle_success_outputs" : 5248, "shuffle_exceptions_caught" : 0 }, ... ] }

Example: Sample data for monitored file

Node Type Example
name node dfs.namenode: hostName=xxx, sessionId=, AddBlockOps=2019, CreateFileOps=2022, ...
datanode dfs.datanode: hostName=xxx, sessionId=, blockChecksumOp_avg_time=0, blockChecksumOp_num_ops=0,...
jobtracker mapred.jobtracker: hostName=xxx, sessionId=, blacklisted_maps=0, blacklisted_reduces=0,...
tasktracker mapred.tasktracker: hostName=xxx, sessionId=, failedDirs=0, mapTaskSlots=2,...

Troubleshooting

How can I tell the Hadoop version and Metrics system I'm using?

The following examples show the output from a CDH3u3 Hadoop cluster and from Apache Hadoop 1.1.1.

Sample output from CDH3u3 Hadoop cluster

The Hadoop version is 0.20.2. It uses the old metrics1 system.

# hadoop version
Hadoop 0.20.2-cdh3u3
Subversion git://ubuntu-slave01/var/lib/jenkins/workspace/CDH3-Selective/build/cdh3/hadoop20/0.20.2-cdh3u3/source -r 318bc781117fa276ae81a3d111f5eeba0020634f
Compiled by jenkins on Tue Mar 20 13:26:06 PDT 2012
From source with checksum fc0b509a5d10a59ca4a620ed2f321480

Sample output from Apache Hadoop 1.1.1

It uses the new metrics2 system.

$ hadoop version
Hadoop 1.1.1
Subversion https://svn.apache.org/repos/asf/hadoop/common/branches/branch-1.1 -r 1411108
Compiled by hortonfo on Mon Nov 19 10:48:11 UTC 2012
From source with checksum 9be520e845cf135867fb8b927a40affb

I have configured my Hadoop metrics output, but I'm missing data

I'm using the REST API and the metrics1 system. I'm not getting all of my data.

Possible problems:

  • you are not using NoEmitMetricsContext in the hadoop-metrics.properties file.
  • FileContext is in place for logging metrics to files.


Example: REST endpoint of a namenode that returns metrics correctly

# curl http://127.0.0.1:50070/metrics
dfs
  FSDirectory
    {hostName=cdh1,sessionId=}:
      files_deleted=2
  FSNamesystem
    {hostName=cdh1,sessionId=}:
      BlockCapacity=2097152
      BlocksTotal=162
      CapacityRemainingGB=90
      CapacityTotalGB=133
      CapacityUsedGB=38
      CorruptBlocks=0
      ExcessBlocks=0
      FilesTotal=37
      MissingBlocks=0
      PendingDeletionBlocks=0
      PendingReplicationBlocks=0
      ScheduledReplicationBlocks=0
      TotalLoad=3
      UnderReplicatedBlocks=0
  namenode
    {hostName=cdh1,sessionId=}:
      AddBlockOps=2
      CreateFileOps=2
      DeleteFileOps=2
      FileInfoOps=13
      FilesAppended=0
      FilesCreated=2
      FilesInGetListingOps=114
      FilesRenamed=0
      GetBlockLocations=0
      GetListingOps=64
      JournalTransactionsBatchedInSync=0
      SafemodeTime=55260
      Syncs_avg_time=0
      Syncs_num_ops=10
      Transactions_avg_time=0
      Transactions_num_ops=12
      blockReport_avg_time=0
      blockReport_num_ops=38
      fsImageLoadTime=9934
jvm
  metrics
    {hostName=cdh1,processName=NameNode,sessionId=}:
      gcCount=41
      gcTimeMillis=288
      logError=0
      logFatal=0
      logInfo=202
      logWarn=0
 ...


Example: REST endpoint of a namenode that returns metrics incorrectly

The problem in this case is that NullContext is dropping all the metrics data.

# curl http://127.0.0.1:50070/metrics
dfs
  FSDirectory
  FSNamesystem
  namenode
jvm
  metrics
rpc
  detailed-metrics
  metrics
ugi
  ugi


Example: Using/jmx- output from a correctly configured namenode

# curl http://127.0.0.1:50070/jmx?qry=*adoop:*
{
  "beans" : [ {
    "name" : "Hadoop:service=NameNode,name=MetricsSystem,sub=Stats",
    "modelerType" : "MetricsSystem,sub=Stats",
    "tag.context" : "metricssystem",
    "tag.hostName" : "funtoo",
    "num_sources" : 6,
    "num_sinks" : 0,
    "snapshot_num_ops" : 0,
    "snapshot_avg_time" : 0.0,
    "snapshot_stdev_time" : 0.0,
    "snapshot_imin_time" : 3.4028234663852886E38,
    "snapshot_imax_time" : 1.401298464324817E-45,
    "snapshot_min_time" : 3.4028234663852886E38,
    "snapshot_max_time" : 1.401298464324817E-45,
    "publish_num_ops" : 0,
    "publish_avg_time" : 0.0,
    "publish_stdev_time" : 0.0,
    "publish_imin_time" : 3.4028234663852886E38,
    "publish_imax_time" : 1.401298464324817E-45,
    "publish_min_time" : 3.4028234663852886E38,
    "publish_max_time" : 1.401298464324817E-45,
    "dropped_pub_all" : 0
  }, {
    "name" : "Hadoop:service=NameNode,name=FSNamesystemMetrics",
    "modelerType" : "FSNamesystemMetrics",
    "tag.context" : "dfs",
    "tag.hostName" : "funtoo",
    "FilesTotal" : 8683,
    "BlocksTotal" : 8659,
    "CapacityTotalGB" : 288,
    "CapacityUsedGB" : 111,
    "CapacityRemainingGB" : 153,
    "TotalLoad" : 4,
    "CorruptBlocks" : 0,
    "ExcessBlocks" : 0,
    "PendingDeletionBlocks" : 0,
    "PendingReplicationBlocks" : 0,
    "UnderReplicatedBlocks" : 23,
    "ScheduledReplicationBlocks" : 0,
    "MissingBlocks" : 0,
    "BlockCapacity" : 2097152
  }, {
    "name" : "Hadoop:service=NameNode,name=NameNodeInfo",
    "modelerType" : "org.apache.hadoop.hdfs.server.namenode.FSNamesystem",
    "Threads" : 27,
    "HostName" : "funtoo",
    "Used" : 119565756416,
    "Version" : "1.1.1, r1411108",
    "Total" : 309426700288,
    "UpgradeFinalized" : true,
    "Free" : 164132498944,
    "Safemode" : "",
    "NonDfsUsedSpace" : 25728444928,
    "PercentUsed" : 38.641056,
    "PercentRemaining" : 53.044064,
    "TotalBlocks" : 8659,
    "TotalFiles" : 8683,
    "LiveNodes" : "{\"fun1\":{\"usedSpace\":31294746624,\"lastContact\":1},\"solaris\":{\"usedSpace\":30706014208,\"lastContact\":2},\"freebsd\":{\"usedSpace\":27930959872,\"lastContact\":1},\"fedora\":{\"usedSpace\":29634035712,\"lastContact\":1}}",
    "DeadNodes" : "{}",
    "DecomNodes" : "{}",
    "NameDirStatuses" : "{\"failed\":{},\"active\":{\"/home/hadoop/hadoop-1.1.1/libexec/../tmp/hadoop-hadoop/dfs/name\":\"IMAGE_AND_EDITS\"}}"
  }, ...
  } ]

Hadoop metrics are not coming into Splunk

I have configured my app for Hadoop metrics collection, but I'm not getting the metrics data.The possible problems are:

  • you did not enable the scripted inputs.
  • you did not enable the metrics files.

Use the following command to check what you have enabled: 'Splunk_TA_hadoopops/bin/hopsconfig.sh --list-all --auth <username>:<password>'

Example: Output showing enabled inputs after running hopsconfig.sh

The following output is a result of running the command 'Splunk_TA_hadoopops/bin/hopsconfig.sh --list-all --auth <username>:<password>'

*** Splunk> Splunk_TA_hadoopops command-line setup > SHOW INPUT STATUS ***

 Scripted Inputs:

0) /home/hadoop/splunkforwarder/etc/apps/Splunk_TA_hadoopops/bin/hadoopmon_cpu.sh
          enabled: *** disabled:     interval: 30
1) /home/hadoop/splunkforwarder/etc/apps/Splunk_TA_hadoopops/bin/hadoopmon_df.sh
          enabled: *** disabled:     interval: 300
2) /home/hadoop/splunkforwarder/etc/apps/Splunk_TA_hadoopops/bin/hadoopmon_dfsreport.sh
          enabled:     disabled: ***
3) /home/hadoop/splunkforwarder/etc/apps/Splunk_TA_hadoopops/bin/hadoopmon_fsckreport.sh
          enabled:     disabled: ***
4) /home/hadoop/splunkforwarder/etc/apps/Splunk_TA_hadoopops/bin/hadoopmon_iostat.sh
          enabled: *** disabled:     interval: 60
5) /home/hadoop/splunkforwarder/etc/apps/Splunk_TA_hadoopops/bin/hadoopmon_metrics.sh http://127.0.0.1:50070/jmx?qry=Hadoop:*
          enabled: *** disabled:     interval: 10
6) /home/hadoop/splunkforwarder/etc/apps/Splunk_TA_hadoopops/bin/hadoopmon_metrics.sh http://127.0.0.1:50090/jmx?qry=Hadoop:*
          enabled: *** disabled:     interval: 10
7) /home/hadoop/splunkforwarder/etc/apps/Splunk_TA_hadoopops/bin/hadoopmon_ps.sh
          enabled: *** disabled:     interval: 30
8) /home/hadoop/splunkforwarder/etc/apps/Splunk_TA_hadoopops/bin/hadoopmon_top.sh
          enabled: *** disabled:     interval: 60
9) /home/hadoop/splunkforwarder/etc/apps/Splunk_TA_hadoopops/bin/hadoopmon_vmstat.sh
          enabled: *** disabled:     interval: 60
10) /home/hadoop/splunkforwarder/etc/apps/Splunk_TA_hadoopops/bin/introspect.sh
          enabled: *** disabled:     interval: -1

 Monitor Inputs:

11) /home/hadoop/hadoop-1.1.1/conf/*.xml
          enabled: *** disabled:
12) /home/hadoop/hadoop-1.1.1/logs/hadoop-hadoop-namenode-funtoo*
          enabled: *** disabled:
13) /home/hadoop/hadoop-1.1.1/logs/hadoop-hadoop-secondarynamenode-funtoo*
          enabled: *** disabled:

Example: Output showing enabled inputs after running hadoopmon_metrics.sh manually

The following output is a result of running the command 'hadoopmon_metrics.sh' manually to ensure that the script can get data from the REST endpoint.

# Splunk_TA_hadoopops/bin/hadoopmon_metrics.sh http://127.0.0.1:50070/jmx?qry=Hadoop:*
{ "beans" : [ { "name" : "Hadoop:service=NameNode,name=MetricsSystem,sub=Stats", 
"modelerType" : "MetricsSystem,sub=Stats", "tag.context" : "metricssystem", 
"tag.hostName" : "funtoo", "num_sources" : 6, "num_sinks" : 0, "snapshot_num_ops" : 0, 
"snapshot_avg_time" : 0.0, "snapshot_stdev_time" : 0.0, "snapshot_imin_time" : 3.4028234663852886E38, 
"snapshot_imax_time" : 1.401298464324817E-45, "snapshot_min_time" : 3.4028234663852886E38, 
"snapshot_max_time" : 1.401298464324817E-45, "publish_num_ops" : 0, "publish_avg_time" : 0.0, 
"publish_stdev_time" : 0.0, "publish_imin_time" : 3.4028234663852886E38, 
...}, ... } ] }

你可能感兴趣的:(Deploy and Use the Splunk App for HadoopOps)