方法1:两两点比较,寻找最近的两个点对,复杂度O(N^2),优点代码简单不容易出错
double mindifference(double arr[], int n) { if (n < 2) { return 0; } double fmin = fabs(arr[0] - arr[1]); for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { double temp = fabs(arr[i] - arr[j]); if (fmin>temp) { fmin = temp; } } } return fmin; }
如果数组是有序的,找出最小的差值容易了。
double mindifference(double arr[], int n) { if (n < 2) { return 0; } sort(arr, arr + n); double fmin = arr[1] - arr[0]; for (int i = 2; i < n; i++){ double temp = arr[i] - arr[i - 1]; if (fmin>temp) { fmin = temp; } } return fmin; }方法3:采用分治法,即从x轴将数据不断分成两部分,两部分最近的两点取其小,在进行两部分中间比较,通过两部分的最小距离,缩小了中间带状的点数量,详见编程之美的分析。
#include <stdio.h> #include <algorithm> #include <vector> #include <math.h> class Point { public: Point(int x, int y) : x_(x), y_(y) {} Point() : x_(0), y_(0) {} static bool OrderByX(const Point& left, const Point& right) { return left.x_ < right.x_; } static bool OrderByY(const Point& left, const Point& right) { return left.y_ < right.y_; } int x_; int y_; }; float Distance(const Point& left, const Point& right) { return sqrt(pow(left.x_ - right.x_, 2) + pow(left.y_ - right.y_, 2)); } int NearestPoints(const std::vector<Point>& points, int start, int end, Point* point1, Point* point2) { if (end > start) { int middle = (start + end) / 2; int left_min_distance = NearestPoints(points, start, middle, point1, point2); int right_min_distance = NearestPoints(points, middle + 1, end, point1, point2); int min_distance = left_min_distance > right_min_distance ? right_min_distance : left_min_distance; std::vector<Point> left_part_points; for (int i = start; i <= middle; ++i) { if (points[middle].x_ - points[i].x_ <= min_distance) { left_part_points.push_back(points[i]); } } sort(left_part_points.begin(), left_part_points.end(), Point::OrderByY); std::vector<Point> right_part_points; for (int i = middle + 1; i <= end; ++i) { if (points[i].x_ - points[middle].x_ <= min_distance) { right_part_points.push_back(points[i]); } } sort(right_part_points.begin(), right_part_points.end(), Point::OrderByY); int distance_y = 0; int point_distance = 0; for(int i = 0; i < left_part_points.size(); ++i) { for(int j = 0; j < right_part_points.size(); ++j) { distance_y = left_part_points[i].y_ > right_part_points[j].y_ ? left_part_points[i].y_ - right_part_points[j].y_ : right_part_points[j].y_ - left_part_points[i].y_; if (distance_y <= min_distance) { point_distance = Distance(left_part_points[i], right_part_points[j]); if (point_distance < min_distance) { min_distance = point_distance; *point1 = left_part_points[i]; *point2 = right_part_points[j]; } } } } return min_distance; } else { return 0x7FFFFFFF; } } int main(int argc, char** argv) { std::vector<Point> points; points.push_back(Point(2,3)); points.push_back(Point(1,4)); points.push_back(Point(3,0)); points.push_back(Point(5,0)); points.push_back(Point(5,1)); sort(points.begin(), points.end(), Point::OrderByX); Point point1; Point point2; NearestPoints(points, 0, points.size() - 1, &point1, &point2); printf("Point1: (%d, %d) <--> Point2: (%d, %d)\n", point1.x_, point1.y_, point2.x_, point2.y_); }