- 面向大语言模型幻觉的关键数据集:系统性综述与分类法
致Great
语言模型人工智能自然语言处理
面向大语言模型幻觉的关键数据集:系统性综述与分类法摘要大语言模型(LargeLanguageModels,LLMs)在自然语言处理的多个领域取得了革命性进展,但其固有的“幻觉”问题——即生成看似合理但与事实不符或与上下文无关的内容——严重制约了其在关键应用中的可靠性与安全性。为了系统性地评估、理解并缓解LLM的幻觉现象,学术界和工业界开发了大量多样化的数据集与基准。本文对大模型幻觉领域的关键数据集
- MyBatis Plus 常用注解
需要重新演唱
webjavamybatisjava数据库
MyBatisPlus是一个基于MyBatis的增强工具,旨在简化开发过程,提高开发效率。它提供了许多实用的功能,如代码生成器、分页插件、条件构造器等,使得开发者可以更专注于业务逻辑的实现,而不必过多关注MyBatis的配置和SQL编写。MyBatisPlus常用注解MyBatisPlus提供了丰富的注解,用于简化实体类和数据库表之间的映射关系。以下是一些常用的注解:1.@TableName用于指
- Oracle 树形统计再进阶:类型多样性与高频类型分析(第三课)
AI、少年郎
oracle数据库
在《Oracle递归+Decode+分组函数实现复杂树形统计(第二课)》基础上,我们进一步攻克部门级请假数据的深度分析需求:1、统计每个部门(含所有下级)的请假类型多样性(共发生多少种类型)2、识别每个部门的高频请假类型(出现次数最多的类型,支持并列情况)3、扩展时间维度统计(按季度/月份分析趋势,示例以季度为例)通过DECODE、递归CTE与高级聚合函数的组合,实现从基础统计到业务洞察的跨越。一
- Oracle 进阶语法实战:从多维分析到数据清洗的深度应用(第四课)
AI、少年郎
oracle数据库
在《Oracle树形统计再进阶》(第三课)基础上,我们跳出传统SQL聚合框架,探索Oracle特有的高级语法特性,包括多维分析神器MODEL子句、数据清洗利器正则表达式、PL/SQL存储过程优化,以及基于执行计划的查询调优技巧。这些技术能解决传统方法难以处理的复杂场景,如动态列生成、不规则数据清洗、批量数据处理等。一、MODEL子句:多维数据建模与动态透视业务场景:动态生成各部门全年度各季度请假类
- 如何配置远程服务器
hai_zwh
服务器电脑配置维修专栏服务器运维
最近组内为了项目新购买了一个算力不错的装有ubuntu20.04系统的主机,本人尝试用此主机搭建一个供多人使用的服务器平台,网上看了很多教程说法不一而且很复杂,经过尝试后,本人探索出了一种较为简单的方法去配置远程服务器(这里以服务器主机为ubuntu系统作为例子)。1.首先,确定你的ubuntu系统的源进行了更新,如果没有更新,打开终端输入以下命令行:sudoaptupdate这里选择sudoap
- 黑盒测试用例设计方法
大帅哥zhangyao
测试用例
黑盒测试用例设计方法黑盒测试用例设计方法包括:等价类划分法、边界值分析法、判定表法、因果图法、正交实验法、状态迁移法、流程分析法等。一、测试设计方法1.等价类分析法1.什么是等价类划分法**等价类(EquivalenceClass)**是一种软件测试技术,旨在减少测试用例数量,同时确保测试的全面性。其核心思想是将输入域划分为若干子集,每个子集中的输入条件被认为是等效的。等价类的基本概念:输入域:指
- Linux 云服务器配置多网卡详解(附策略路由配置方法)Linux 云服务器多网卡配置、策略路由、IPRoute2、VPC私有网络
代码简单说
运维教程服务器linux网络
Linux云服务器配置多网卡详解(附策略路由配置方法)标签:Linux云服务器、多网卡配置、策略路由、IPRoute2、VPC私有网络前段时间项目上线遇到一个场景,需要给一台云服务器绑定多块网卡,让不同的业务走不同的内网通道,既要安全又要稳定。最开始我以为只是加块网卡那么简单,实际操作才发现,配置完还要配策略路由,不然根本ping不通,服务也收不到请求。为了让大家少走弯路,我把完整过程整理成这篇文
- MySQL 的日志分析
jarenyVO
Mysql数据库
MySQL的日志分析MySQL的日志系统是保证数据一致性、持久性和高可用的核心组件,不同日志各司其职。以下是详细分类和解析:一、事务日志(InnoDB引擎层)1.RedoLog(重做日志)物理格式:循环写入的固定大小文件(默认ib_logfile0、ib_logfile1)核心作用:崩溃恢复:确保事务的持久性(Durability)Write-AheadLogging(WAL):数据页修改前先写r
- ICPC 小白勇闯南京
超闻逸事
游记c++
第49届ICPC南京站游记【2024.11.2−2024.11.32024.11.2-2024.11.32024.11.2−2024.11.3】Day−2-2−2下午翘课,VP了202220222022年南京的区域赛。但是大家打得并不是非常认真,最后只过了555题。开局签到,但是我读题加写题花了202020分钟。看来还是我英语水平不够的问题,好在没有罚时。队友开了一道比签到稍微难点的题,但是卡在背
- DataInputStream与InputStream区别
sclibingqing
JAVA
1、DataInputStream类继承了InputStream。也就是说DataInputStream是InputStream的子类。但它们同是实现了DataInput接口。2、DataInputStream比普通的InputStream多一些方法。增加方法如下:publicabstractvoidreadFully(byteabyte0[])throwsIOException;publicab
- ICPC/CCPC 2024
超闻逸事
游记c++
2024.8.252024.8.252024.8.25组队由我SUNCHAOYI和两位大佬oahgnail,Erusel组成。【说句闲话,由于组队有点匆忙,我和Erusel愣是花了一下午从新生群中的强省一个个人肉搜索找到的队友。】好了,队名还是要乱搞的,于是就有了:中文队名:仚屳屲冚(xiaˉnxiaˉnwaˉkaˇn)英文队名:Supercalifragilisticexpialidocious
- Docker 搭建 GitLab-ssl
qq_36381626
mdgitlabdockergit
参考正确使用Docker搭建GitLab只要半分钟sudomkdir-p/home/data/gitlab/config然后在该文件目录下,新建自签名的证书:sudoopensslreq-new-x509-days36500-nodes-outconfig/nginx.pem\-keyoutconfig/nginx.key-subj"/C=US/CN=gitlab/O=gitlab.com"git
- 软件测试分类
@旺仔牛奶
功能测试
目录一、按测试技术划分1、白盒测试2、黑盒测试3、灰盒测试二、按测试阶段划分1、单元测试2、集成测试3、系统测试4、验收测试(正式验收测试、Apha测试、Beta测试)三、按被测试对象是否运行划分1、动态测试2、静态测试四、按不同的测试手段划分1、手工测试2、自动化测试五、按软件质量特性内容划分1、功能测试(界面测试)2、可靠性测试3、易用性测试4、性能测试(负载测试、压力测试、并发测试、稳定性测
- 导师要求一天完成综述,我7分钟搞定——打造一个全本地DeepResearch助手
小洛~·~
人工智能深度学习chatgptgptAI写作
1.项目背景LocalDeepResearcher是一个本地化运行的AI研究助手,旨在通过结合大语言模型(LLM)和搜索工具,实现自动化深度研究并生成结构化报告。该项目由LangChainAI开发,支持本地模型(例如通过Ollama运行的deepseek-r1:7b)和云端模型(例如Claude、GPT),并集成了多种搜索引擎(如Tavily、DuckDuckGo)。其本地优先的设计确保了数据隐私
- 【锂电池SOC估计】 Matlab基于BP神经网络的锂电池SOC估计
天天Matlab代码科研顾问
matlab神经网络开发语言
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍摘要:电池荷电状态(StateofCharge,SOC)的精确估计对于电动汽车、储能系统等应用至关重要。传统的SOC估计方法存在精度受限、算法复杂等问题。本文提出了一种基于反向传播(BackPropagation,BP)神经网络的锂电池SO
- 【LangGraph 】“工作流”的核心就是围绕一个共享的 `State`
等风来不如迎风去
AI入门与实战langgraph
是的。LangGraph里“工作流”的核心就是围绕一个共享的State(也常被命名为AgentState或者类似的TypedDict/Pydantic模型)来组织的:State本质上是整个流程的“快照”,所有跨节点需要保留或传递的数据,都必须定义在这个结构里。LangGraph在执行节点(node)时,会把当前的State传入该节点,节点内部可以读写它,然后再返回一个新的(或被修改过的)State
- Unity引擎开发:VR渲染技术_(19).VR项目实例开发
chenlz2007
虚拟现实游戏2unityvrlucene游戏引擎json全文检索
VR项目实例开发在本节中,我们将通过一个具体的虚拟现实项目实例,详细介绍如何在Unity引擎中实现VR渲染技术。我们将从项目的基本设置开始,逐步讲解如何创建VR场景、配置相机、添加交互元素、优化性能等方面的内容。通过本节的学习,您将能够掌握在Unity中开发VR项目的基本流程和技术要点。1.项目基本设置1.1创建新的VR项目首先,打开UnityHub并创建一个新的项目。选择“3D”模板,然后在项目
- 结构力学优化算法:多目标优化:遗传算法与结构优化_2024-08-08_19-41-25.Tex
chenjj4003
材料力学2算法javascript前端人工智能线性代数
结构力学优化算法:多目标优化:遗传算法与结构优化绪论结构优化的重要性在工程设计中,结构优化扮演着至关重要的角色。它旨在通过最小化成本、重量或应力等目标,同时确保结构的强度、刚度和稳定性满足设计要求,来提高结构的性能和效率。结构优化可以帮助工程师在设计初期就避免潜在的结构问题,减少材料浪费,降低生产成本,同时提升产品的竞争力。多目标优化的概念多目标优化是指在优化过程中同时考虑多个目标函数的优化问题。
- 七天学完十大机器学习经典算法-05.从投票到分类:K近邻(KNN)算法完全指南
接上一篇《七天学完十大机器学习经典算法-04.随机森林:群众智慧的机器学习实践》想象一下,你搬进了一个新小区。想知道这个小区整体氛围如何?最直接的方法就是看看你最近的几家邻居是什么样的人——如果邻居们都很安静、整洁,小区大概率不错;如果邻居们深夜喧哗、环境杂乱,你可能就得重新考虑了。K近邻(K-NearestNeighbors,KNN)算法的核心思想,就如同这个观察邻居的过程。它是机器学习中最直观
- 分类预测 | MATLAB实现BP神经网络多特征分类预测
matlab科研社
分类matlab神经网络
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍近年来,随着大数据时代的到来以及计算能力的显著提升,人工智能技术得到了飞速发展。在众多人工智能算法中,反向传播神经网络(BackPropagationNeuralNetwork,BP神经网络)凭借其强大的非
- RabbitMQ中,basicAck、basicNack和basicReject是三种核心的消息确认机制
CATTLECODE
rabbitmq分布式
channel.basicNack(message.getMessageProperties().getDeliveryTag(),false,true); channel.basicReject(message.getMessageProperties().getDeliveryTag(),false);channel.basicAck(message.getMessageProperties(
- AI测试方法
二狗子82
ai功能测试测试用例AIGC
1.创建高质量的测试数据集为了验证标签的准确性,需要构建一个丰富的测试数据集。该数据集应包括多种场景和风格的输入文本:正常对话、非正式对话、含有拼写错误或语法问题的文本等。包括模棱两可或复杂情境的文本,看看模型是否能正确分类。确保数据集中有足够的标签种类分布,这样可以测试模型是否能应对不同类别的文本内容。2.多轮对话的上下文跟踪对于涉及多轮对话或长文本的情况,模型需要正确理解整个对话的上下文。例如
- 敏感数据流动治理:API 调用中的动态脱敏技术实践
KKKlucifer
rxjavaandroid
在数字化转型加速推进的当下,API已成为企业数据流通的"神经网络",但伴随而来的敏感数据泄露风险正呈指数级增长。Gartner报告显示,2023年全球企业数据泄露事件中,39%源于API接口滥用,而传统静态脱敏技术在复杂业务场景下的防护效能已下降42%。动态脱敏技术作为应对API数据流动安全的核心方案,通过实时识别、智能处理、动态响应的全流程防护,正成为企业构建数据安全流动体系的关键技术支撑。保旺
- 非结构化文档的自动化敏感标识方法技术解析
KKKlucifer
自动化运维
在数字化时代,企业与组织面临的数据形态正发生深刻变革。据统计,非结构化数据占企业数据总量的80%以上,涵盖文本、邮件、PDF、日志、社交媒体内容等多种形式。这些数据中往往蕴含着大量敏感信息,如个人身份信息、商业机密、医疗记录等,一旦泄露将造成严重的安全风险。然而,非结构化文档缺乏统一的数据模型和格式规范,传统基于结构化数据的敏感信息识别方法难以直接应用,面临着三大核心挑战:语义理解复杂性:自然语言
- 电子文档全生命周期审计:构建企业数据安全的 “时间指纹“ 体系
在数字化转型深入推进的今天,电子文档作为企业知识资产与商业机密的主要载体,其全生命周期的安全管理已成为数据安全体系的核心环节。据IBM《2023数据泄露报告》显示,43%的数据泄露事件源于内部操作疏忽,而缺乏完整的文档审计轨迹导致62%的企业无法追溯泄露源头。电子文档全生命周期审计策略,通过对文档创建、流转、使用、归档到销毁的全流程行为记录与分析,构建起可追溯、可验证、可预警的安全防护网,正成为企
- frp内网穿透及sshuttle
段帅龙呀
Linuxlinux
frpssh配合sshuttle可以真实模拟,直接访问内网vmwareip地址FRP内网穿透一、所需环境:服务端:1台有公网ip并且安装有docker的服务器、域名客户端:有1台或者多台安装docker的服务器如果有域名需要添加对应的解析有防火墙或者安全组需要开放对应端口,frps监听7000,frpsdashboard监听7500,client本次示例是6000,根据实际情况修改本篇笔记均使用u
- docker安装nginx并配置ssl证书,代理宿主机服务
Blueeyedboy521
开发工具nginxssldocker
目录1、拉取镜像2、创建映射目录3、先启动一个nginx容器用于cp对应的文件夹类型,用于后期挂载使用4、映射容器文件5、停止当前nginx容器,并删除7、拷贝ssl证书8、配置nginx.conf9、运行10、进入容器11、查看日志12、代理宿主机服务查看宿主机在docker中的ip配置docker上安装的nginx1、拉取镜像dockerpullnginx2、创建映射目录#首先,创建目录ngi
- Redis 持久化之 AOF 策略
1.什么是AOFAOF是appendonlyfile,AOF文件中记录了每次的操作指令,在启动Redis时,会将AOF文件中的数据读取出来以恢复数据。2.开启AOFRedis默认关闭AOF,可以通过将Redis配置文件中的appendonly设置为yes,这样就开启了AOF,此时RDB就会关闭,只能使用AOF和RDB中的一个。3.AOF的工作流程用户执行指令后,会将该指令写入到AOF缓冲区(aof
- 信息抽取数据集全景分析:分类体系、技术演进与挑战_DEEPSEEK
致Great
分类数据挖掘人工智能
信息抽取数据集全景分析:分类体系、技术演进与挑战摘要信息抽取(IE)作为自然语言处理的核心任务,是构建知识图谱、支持智能问答等应用的基础。近年来,随着深度学习技术的发展和大规模预训练模型的兴起,IE数据集呈现爆发式增长,其分析与评估对模型研发和领域迁移至关重要。本文基于对158个主流IE数据集的系统性梳理,首次提出“信息提取与命名实体识别数据集分类体系”。该体系涵盖8大类别(命名实体识别、关系提取
- 【docker】如何正确拉取langgraph-api
等风来不如迎风去
AI入门与实战docker容器运维
加这些配置都没用#设置代理环境变量exportHTTP_PROXY=http://127.0.0.1:7890exportHTTPS_PROXY=http://127.0.0.1:7890#设置更长的超时时间exportDOCKER_CLIENT_TIMEOUT=
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep