Oracle 常用统计函数及注意点

oracle中over()开窗函数的理解
开窗函数指定了分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变化而变化,举例如下:
over(order by salary) 按照salary排序进行累计,order by是个默认的开窗函数
over(partition by deptno)按照部门分区
over(order by salary range between 50 preceding and 150 following)
每行对应的数据窗口是之前行幅度值不超过50,之后行幅度值不超过150
over(order by salary rows between 50 preceding and 150 following)
每行对应的数据窗口是之前50行,之后150行
over(order by salary rows between unbounded preceding and unbounded following)
每行对应的数据窗口是从第一行到最后一行,等效:
over(order by salary range between unbounded preceding and unbounded following)

 

cube子句在产生交叉报表的情况

聚合是数据仓库的基础。为了提高聚合的性能。Oracle提供了Group By 条款的扩展。
1. CUBE, ROLLUP扩展
2. 3个grouping函数
3. Grouping set扩展
CUBE ROLLUP GROUPING SETS对SQL的扩展使得查询和报告都变得简单和迅速。Rollup计算诸如sum count max min avg的函数,增加了聚合的级别.CUBE是一个类似ROLLUP的扩展,使得可以用一个语句计算所有可能的聚合。CUBE可以通过单条生成Cross-tabulation(交叉报表)报告的信息。CUBE,ROLLUP,GROUPING SETS扩展令你可以精确的对你感兴趣的group by 条款进行grouping。不运行cube操作也可以高效的从多个维度进行分析。计算一个full cube将会带来很高的负载,所以将cube替换为grouping sets可以明显地提高性能。CUBE ROLLUP GROUPING SETS可以生成单个结果集,等效于UNION ALL。为了提高性能,CUBE, ROLLUP, and GROUPING SETS可以并行进行:多进程同时运算所有的语句。这种功能使得聚合计算更加高效,因此提高了数据库性能和可测性

使用LAGLEAD函数统计

LagLead函数可以在一次查询中取出同一字段的前N行的数据和后N行的值。这种操作可以使用对相同表的表连接来实现,不过使用LAGLEAD有更高的效率

Lag函数为Lag(exp,N,defval)defval是当该函数无值可用的情况下返回的值。Lead函数的用法类似。

LeadLag函数也可以使用分组

你可能感兴趣的:(oracle,sql,工作)