机器学习算法应用中常用技巧-2

7. 降维-PCA

n_components为降到多少维,用原数据fit后,再用transform转换成降维后的数据。

from sklearn.decomposition import PCA
pca = PCA(n_components = 6)
pca.fit(good_data)
reduced_data = pca.transform(good_data)
reduced_data = pd.DataFrame(reduced_data, columns = ['Dimension 1', 'Dimension 2'])

8. 聚类-选择类别数

用 silhouette coefficient 计算每个数据到中心点的距离,-1 (dissimilar) to 1 (similar) 根据这个系数来评价聚类算法的优劣。

from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
cluster = KMeans(n_clusters=2, random_state=0).fit(reduced_data)
preds = cluster.predict(reduced_data)
score = silhouette_score(reduced_data, preds)

选择分数最大的个数作为聚类的类别数。

9. 恢复维度

例如数据,先经过 log,又经过 PCA降维, 要恢复回去,先用 pca.inverse_transform,再用 np.exp

log_centers = pca.inverse_transform(centers)
true_centers = np.exp(log_centers)
true_centers = pd.DataFrame(np.round(true_centers), columns = data.keys())

数据变化:

10. 自定义accuracy

分类问题可以自己写accuracy的函数

def accuracy_score(truth, pred):
    """ Return accuracy score for input truth and prediction"""

    if len(truth)==len(pred):
        return "Accuracy for prediction: {:.2f}%.".format((truth==pred).mean()*100)
    else:
        return "Numbers do not match!"

推荐阅读
历史技术博文链接汇总
也许可以找到你想要的

你可能感兴趣的:(机器学习)