CDH:5.8.0;Hadoop:2.6.0 ; Spark:1.6.0; Hive:1.1.0;JDK:1.7 ; SDK:2.10.6(Scala)
工程下载:https://github.com/fansy1990/spark_hive_source_destination/releases/tag/V1.1
在Spark加载PMML文件处理数据(参考:http://blog.csdn.net/fansy1990/article/details/53293024)及Spark读写Hive(http://blog.csdn.net/fansy1990/article/details/53401102)的基础上,整合这两个操作,即使用Spark读取Hive表数据,然后加载PMML文件到模型,使用模型对读取对Hive数据进行处理,得到新的数据,写入到新的Hive表。
1. 工程pom文件,工程pom文件添加了spark、spark-hive以及pmml的依赖支持,如下:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>cdh5.7.3</groupId> <artifactId>spark_hive</artifactId> <version>1.0-SNAPSHOT</version> <inceptionYear>2008</inceptionYear> <properties> <scala.version>2.10.6</scala.version> <spark.version>1.6.0-cdh5.7.3</spark.version> </properties> <repositories> <repository> <id>cloudera</id> <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url> </repository> </repositories> <dependencies> <!-- Spark --> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.10</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-mllib_2.10</artifactId> <version>${spark.version}</version> <exclusions> <exclusion> <groupId>org.jpmml</groupId> <artifactId>pmml-model</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>org.jpmml</groupId> <artifactId>pmml-evaluator</artifactId> <version>1.2.15</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive_2.10</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.10</version> <scope>test</scope> </dependency> <dependency> <groupId>org.specs</groupId> <artifactId>specs</artifactId> <version>1.2.5</version> <scope>test</scope> </dependency> </dependencies> <build> <sourceDirectory>src/main/scala</sourceDirectory> <testSourceDirectory>src/test/scala</testSourceDirectory> <plugins> <plugin> <groupId>org.scala-tools</groupId> <artifactId>maven-scala-plugin</artifactId> <version>2.15.2</version> <executions> <execution> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> </execution> </executions> <configuration> <scalaVersion>${scala.version}</scalaVersion> <args> <arg>-target:jvm-1.7</arg> </args> </configuration> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-shade-plugin</artifactId> <version>2.4.2</version> <executions> <execution> <phase>package</phase> <goals> <goal>shade</goal> </goals> <configuration> <createDependencyReducedPom>false</createDependencyReducedPom> <finalName>example-${project.version}</finalName> <artifactSet> <excludes> <exclude>oro*</exclude> <exclude>org.apache.*:*</exclude> <exclude>junit:junit</exclude> <exclude>org.sc*</exclude> <exclude>org.sp*</exclude> <exclude>org.sl*</exclude> <exclude>org.r*</exclude> <exclude>org.c*</exclude> <exclude>org.t*</exclude> <exclude>org.e*</exclude> <exclude>org.u*</exclude> <exclude>org.x*</exclude> <exclude>org.js*</exclude> <exclude>org.jo*</exclude> <exclude>org.f*</exclude> <exclude>org.m*</exclude> <exclude>org.o*</exclude> <exclude>*:xml-apis</exclude> <exclude>log4j*</exclude> <exclude>org.antlr*</exclude> <exclude>org.datanucleus*</exclude> <exclude>net*</exclude> <exclude>commons*</exclude> <exclude>com.j*</exclude> <exclude>com.x*</exclude> <exclude>com.n*</exclude> <exclude>com.i*</exclude> <exclude>com.t*</exclude> <exclude>com.c*</exclude> <exclude>com.gi*</exclude> <exclude>com.google.code*</exclude> <exclude>com.google.p*</exclude> <exclude>com.f*</exclude> <exclude>com.su*</exclude> <exclude>com.a*</exclude> <exclude>com.e*</exclude> <exclude>javax*</exclude> <exclude>s*</exclude> <exclude>i*</exclude> <exclude>j*</exclude> <exclude>a*</exclude> <exclude>x*</exclude> </excludes> </artifactSet> <relocations> <relocation> <pattern>com.google.common</pattern> <shadedPattern>com.shaded.google.common</shadedPattern> </relocation> <relocation> <pattern>org.dmg.pmml</pattern> <shadedPattern>org.shaded.dmg.pmml</shadedPattern> </relocation> <relocation> <pattern>org.jpmml.agent</pattern> <shadedPattern>org.shaded.jpmml.agent</shadedPattern> </relocation> <relocation> <pattern>org.jpmml.model</pattern> <shadedPattern>org.shaded.jpmml.model</shadedPattern> </relocation> <relocation> <pattern>org.jpmml.schema</pattern> <shadedPattern>org.shaded.jpmml.schema</shadedPattern> </relocation> </relocations> </configuration> </execution> </executions> </plugin> </plugins> </build> </project>在pom文件中,使用了maven的shade插件,这个插件可以把jpmml的相关依赖包一起打包,这样在spark平台调用的时候就不会出现类找不到的错误了;同时,因为很多jar包是spark平台自有的,所以不需要一起打包,这里加了excludes过滤。
2. 测试环境构建:
1)首先是生成pmml文件,这个文件已经由其他程序生成,如下:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> <PMML version="4.2" xmlns="http://www.dmg.org/PMML-4_2"> <Header description="linear SVM"> <Application name="Apache Spark MLlib"/> <Timestamp>2016-11-16T22:17:47</Timestamp> </Header> <DataDictionary numberOfFields="4"> <DataField name="field_0" optype="continuous" dataType="double"/> <DataField name="field_1" optype="continuous" dataType="double"/> <DataField name="field_2" optype="continuous" dataType="double"/> <DataField name="target" optype="categorical" dataType="string"/> </DataDictionary> <RegressionModel modelName="linear SVM" functionName="classification" normalizationMethod="none"> <MiningSchema> <MiningField name="field_0" usageType="active"/> <MiningField name="field_1" usageType="active"/> <MiningField name="field_2" usageType="active"/> <MiningField name="target" usageType="target"/> </MiningSchema> <RegressionTable intercept="0.0" targetCategory="1"> <NumericPredictor name="field_0" coefficient="-0.36682158807862086"/> <NumericPredictor name="field_1" coefficient="3.8787681305811765"/> <NumericPredictor name="field_2" coefficient="-1.6134308474471166"/> </RegressionTable> <RegressionTable intercept="0.0" targetCategory="0"/> </RegressionModel> </PMML>
-- field_0,field_1,field_2 -- 98,97,96 create table svm ( field_0 double , field_1 double, field_2 double ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE; -- import data , get ride of first line load data inpath 'svm.data' into table svm;导入后,得到的hive表及表数据:
3) 编译及打包:下载工程后,先执行build-》Make project,看到target目录下生成classes文件,如下:
因为使用了java和scala混合编程,所以这里需要先编译,然后在执行maven的package命令,这样的到的jar包才会包含pmml-spark的相关class文件,并且由于这里没有引入pmml-spark的依赖,只是把其源码放到这里而已,所以需要这样做,打包后,得到target目录下的所需jar包;
4)调用:
直接使用spark-submit的方式进行调用,其命令如下:
spark-submit --class pmml.SparkReadWriteHiveWithPMML --master yarn --deploy-mode cluster --jars /usr/lib/hive/lib/datanucleus-core-3.2.10.jar --files /usr/lib/hive/conf/hive-site.xml example-1.0-SNAPSHOT.jar svm tmp4 /tmp/svm.pmml
如果输出表存在,那么会报错(如tmp4存在):
5)查看结果:首先是yarn任务,如下:
接着是hive中的表,如下:
从hive表中可以看到数据被pmml模型正确的预测得到了。
1. Hive表如果使用分区表情况会比较复杂,暂时没有验证过;
2. 如果hive表已经存在,那么会出现异常,是否可以考虑在代码中把输出的表删掉?
3. pmml-spark依赖是否可以直接写入pom文件,而不需要把源码放入工程?
如果您觉得lz的文章还行,并且您愿意动动手指,可以为我投上您的宝贵一票!谢谢!
http://blog.csdn.net/vote/candidate.html?username=fansy1990