java红黑树的控制台打印


二叉搜索树这个数据结构太重要

首先被提出来的二叉平衡搜索树的方式是AVL树,然后提出来的是Tree Heap树,最后目前在实践中最为高效的红黑树。

Java中的TreeMap也是基于红黑树实现

所以想要深入学习一下红黑树

这里首先贴上google搜到的红黑树代码

/*************************************************************************

 * Compilation:  javacRedBlackBST.java

 * Execution:    java RedBlackBST< input.txt

 * Dependencies: StdIn.java StdOut.java 

 *  Datafiles:  http://algs4.cs.princeton.edu/33balanced/tinyST.txt 

 *   

 *  Asymbol table implemented using a left-leaning red-black BST.

 *  Thisis the 2-3 version.

 *

 *  Note:commented out assertions because DrJava now enables assertions

 *       by default.

 *

 *  %more tinyST.txt

 *  S E AR C H E X A M P L E

 * 

 *  %java RedBlackBST < tinyST.txt

 *  A 8

 *  C 4

 *  E 12

 *  H 5

 *  L 11

 *  M 9

 *  P 10

 *  R 3

 *  S 0

 *  X 7

 *

 *************************************************************************/

 

importjava.util.LinkedList;

importjava.util.NoSuchElementException;

import java.util.Queue;

importjava.util.Random;

 

public classRedBlackBST<Key extends Comparable<Key>, Value> {

 

    private static final boolean RED   = true;

    private static final boolean BLACK = false;

 

    private Node root;     // root of the BST

 

    // BST helper node data type

    class Node {

        private Key key;           // key

        private Value val;         // associated data

        private Node left, right;  // links to left and right subtrees

        private boolean color;     // color of parent link

        private int N;             // subtree count

 

        public Node(Key key, Value val, booleancolor, int N) {

            this.key = key;

            this.val = val;

            this.color = color;

            this.N = N;

        }

    }

 

  /*************************************************************************

    * Node helper methods

    *************************************************************************/

    // is node x red; false if x is null ?

    private boolean isRed(Node x) {

        if (x == null) return false;

        return (x.color == RED);

    }

 

    // number of node in subtree rooted at x; 0if x is null

    private int size(Node x) {

        if (x == null) return 0;

        return x.N;

    }

 

 

  /*************************************************************************

    * Size methods

   *************************************************************************/

 

    // return number of key-value pairs in thissymbol table

    public int size() { return size(root); }

 

    // is this symbol table empty?

    public boolean isEmpty() {

        return root == null;

    }

 

   /*************************************************************************

    * Standard BST search

   *************************************************************************/

 

    // value associated with the given key;null if no such key

    public Value get(Key key) { return get(root,key); }

 

    // value associated with the given key insubtree rooted at x; null if no such key

    private Value get(Node x, Key key) {

        while (x != null) {

            int cmp = key.compareTo(x.key);

            if      (cmp < 0) x = x.left;

            else if (cmp > 0) x = x.right;

            else              return x.val;

        }

        return null;

    }

 

    // is there a key-value pair with the givenkey?

    public boolean contains(Key key) {

        return (get(key) != null);

    }

 

    // is there a key-value pair with the givenkey in the subtree rooted at x?

    private boolean contains(Node x, Key key) {

        return (get(x, key) != null);

    }

 

   /*************************************************************************

    * Red-black insertion

   *************************************************************************/

 

    // insert the key-value pair; overwrite theold value with the new value

    // if the key is already present

    public void put(Key key, Value val) {

        root = put(root, key, val);

        root.color = BLACK;

        // assert check();

    }

 

    // insert the key-value pair in the subtreerooted at h

    private Node put(Node h, Key key, Valueval) {

        if (h == null) return new Node(key,val, RED, 1);

 

        int cmp = key.compareTo(h.key);

        if     (cmp < 0) h.left  =put(h.left,  key, val);

        else if (cmp > 0) h.right = put(h.right,key, val);

        else              h.val   = val;

 

        // fix-up any right-leaning links

        if (isRed(h.right) &&!isRed(h.left))      h = rotateLeft(h);

        if (isRed(h.left)  && isRed(h.left.left)) h = rotateRight(h);

        if (isRed(h.left)  && isRed(h.right))     flipColors(h);

        h.N = size(h.left) + size(h.right) + 1;

 

        return h;

    }

 

  /*************************************************************************

    * Red-black deletion

    *************************************************************************/

 

    // delete the key-value pair with theminimum key

    public void deleteMin() {

        if (isEmpty()) throw newNoSuchElementException("BST underflow");

 

        // if both children of root are black,set root to red

        if (!isRed(root.left) &&!isRed(root.right))

            root.color = RED;

 

        root = deleteMin(root);

        if (!isEmpty()) root.color = BLACK;

        // assert check();

    }

 

    // delete the key-value pair with theminimum key rooted at h

    private Node deleteMin(Node h) {

        if (h.left == null)

            return null;

 

        if (!isRed(h.left) &&!isRed(h.left.left))

            h = moveRedLeft(h);

 

        h.left = deleteMin(h.left);

        return balance(h);

    }

 

 

    // delete the key-value pair with themaximum key

    public void deleteMax() {

        if (isEmpty()) throw newNoSuchElementException("BST underflow");

 

        // if both children of root are black,set root to red

        if (!isRed(root.left) &&!isRed(root.right))

            root.color = RED;

 

        root = deleteMax(root);

        if (!isEmpty()) root.color = BLACK;

        // assert check();

    }

 

    // delete the key-value pair with themaximum key rooted at h

    private Node deleteMax(Node h) {

        if (isRed(h.left))

            h = rotateRight(h);

 

        if (h.right == null)

            return null;

 

        if (!isRed(h.right) && !isRed(h.right.left))

            h = moveRedRight(h);

 

        h.right = deleteMax(h.right);

 

        return balance(h);

    }

 

    // delete the key-value pair with the givenkey

    public void delete(Key key) {

        if (!contains(key)) {

            System.err.println("symboltable does not contain " + key);

            return;

        }

 

        // if both children of root are black,set root to red

        if (!isRed(root.left) &&!isRed(root.right))

            root.color = RED;

 

        root = delete(root, key);

        if (!isEmpty()) root.color = BLACK;

        // assert check();

    }

 

    // delete the key-value pair with the givenkey rooted at h

    private Node delete(Node h, Key key) {

        // assert contains(h, key);

 

        if (key.compareTo(h.key) < 0)  {

            if (!isRed(h.left) &&!isRed(h.left.left))

                h = moveRedLeft(h);

            h.left = delete(h.left, key);

        }

        else {

            if (isRed(h.left))

                h = rotateRight(h);

            if (key.compareTo(h.key) == 0&& (h.right == null))

                return null;

            if (!isRed(h.right) &&!isRed(h.right.left))

                h = moveRedRight(h);

            if (key.compareTo(h.key) == 0) {

                Node x = min(h.right);

                h.key = x.key;

                h.val = x.val;

                // h.val = get(h.right,min(h.right).key);

                // h.key = min(h.right).key;

                h.right = deleteMin(h.right);

            }

            else h.right = delete(h.right,key);

        }

        return balance(h);

    }

 

  /*************************************************************************

    * red-black tree helper functions

    *************************************************************************/

 

    // make a left-leaning link lean to theright

    private Node rotateRight(Node h) {

        // assert (h != null) &&isRed(h.left);

        Node x = h.left;

        h.left = x.right;

        x.right = h;

        x.color = x.right.color;

        x.right.color = RED;

        x.N = h.N;

        h.N = size(h.left) + size(h.right) + 1;

        return x;

    }

 

    // make a right-leaning link lean to theleft

    private Node rotateLeft(Node h) {

        // assert (h != null) &&isRed(h.right);

        Node x = h.right;

        h.right = x.left;

        x.left = h;

        x.color = x.left.color;

        x.left.color = RED;

        x.N = h.N;

        h.N = size(h.left) + size(h.right) + 1;

        return x;

    }

 

    // flip the colors of a node and its twochildren

    private void flipColors(Node h) {

        // h must have opposite color of itstwo children

        // assert (h != null) &&(h.left != null) && (h.right != null);

        // assert (!isRed(h) &&  isRed(h.left) &&  isRed(h.right))

        //    || (isRed(h)  &&!isRed(h.left) && !isRed(h.right));

        h.color = !h.color;

        h.left.color = !h.left.color;

        h.right.color = !h.right.color;

    }

 

    // Assuming that h is red and both h.leftand h.left.left

    // are black, make h.left or one of itschildren red.

    private Node moveRedLeft(Node h) {

        // assert (h != null);

        // assert isRed(h) &&!isRed(h.left) && !isRed(h.left.left);

 

        flipColors(h);

        if (isRed(h.right.left)) {

            h.right = rotateRight(h.right);

            h = rotateLeft(h);

        }

        return h;

    }

 

    // Assuming that h is red and both h.rightand h.right.left

    // are black, make h.right or one of itschildren red.

    private Node moveRedRight(Node h) {

        // assert (h != null);

        // assert isRed(h) &&!isRed(h.right) && !isRed(h.right.left);

        flipColors(h);

        if (isRed(h.left.left)) {

            h = rotateRight(h);

        }

        return h;

    }

 

    // restore red-black tree invariant

    private Node balance(Node h) {

        // assert (h != null);

 

        if (isRed(h.right))                      h = rotateLeft(h);

        if (isRed(h.left) &&isRed(h.left.left)) h = rotateRight(h);

       if (isRed(h.left) && isRed(h.right))     flipColors(h);

 

        h.N = size(h.left) + size(h.right) + 1;

        return h;

    }

 

 

  /*************************************************************************

    * Utility functions

   *************************************************************************/

 

    // height of tree (1-node tree has height0)

    public int height() { return height(root);}

    private int height(Node x) {

        if (x == null) return -1;

        return 1 + Math.max(height(x.left),height(x.right));

    }

 

  /*************************************************************************

    * Ordered symbol table methods.

   *************************************************************************/

 

    //the smallest key; null if no such key

    public Key min() {

        if (isEmpty()) return null;

        return min(root).key;

    }

 

    // the smallest key in subtree rooted at x;null if no such key

    private Node min(Node x) {

        // assert x != null;

        if (x.left == null) return x;

        else                return min(x.left);

    }

 

    // the largest key; null if no such key

    public Key max() {

        if (isEmpty()) return null;

        return max(root).key;

    }

 

    // the largest key in the subtree rooted atx; null if no such key

    private Node max(Node x) {

        // assert x != null;

        if (x.right == null) return x;

        else                 return max(x.right);

    }

 

    // the largest key less than or equal tothe given key

    public Key floor(Key key) {

        Node x = floor(root, key);

        if (x == null) return null;

        else           return x.key;

    }   

 

    // the largest key in the subtree rooted atx less than or equal to the given key

    private Node floor(Node x, Key key) {

        if (x == null) return null;

        int cmp = key.compareTo(x.key);

        if (cmp == 0) return x;

        if (cmp < 0)  return floor(x.left, key);

        Node t = floor(x.right, key);

        if (t != null) return t;

        else           return x;

    }

 

    // the smallest key greater than or equalto the given key

    public Key ceiling(Key key) { 

        Node x = ceiling(root, key);

        if (x == null) return null;

        else           return x.key; 

    }

 

    // the smallest key in the subtree rootedat x greater than or equal to the given key

    private Node ceiling(Node x, Key key){ 

        if (x == null) return null;

        int cmp = key.compareTo(x.key);

        if (cmp == 0) return x;

        if (cmp > 0)  return ceiling(x.right, key);

        Node t = ceiling(x.left, key);

        if (t != null) return t;

        else           return x;

    }

 

 

    // the key of rank k

    public Key select(int k) {

        if (k < 0 || k >= size())  return null;

        Node x = select(root, k);

        return x.key;

    }

 

    // the key of rank k in the subtree rootedat x

    private Node select(Node x, int k) {

        // assert x != null;

        // assert k >= 0 && k <size(x);

        int t = size(x.left);

        if     (t > k) return select(x.left, k);

        else if (t < k) returnselect(x.right, k-t-1);

        else            return x;

    }

 

    // number of keys less than key

    public int rank(Key key) {

        return rank(key, root);

    }

 

    // number of keys less than key in thesubtree rooted at x

    private int rank(Key key, Node x) {

        if (x == null) return 0;

        int cmp = key.compareTo(x.key);

        if     (cmp < 0) return rank(key, x.left);

        else if (cmp > 0) return 1 +size(x.left) + rank(key, x.right);

        else              return size(x.left);

    }

 

  /***********************************************************************

    * Range count and range search.

   ***********************************************************************/

 

    // all of the keys, as an Iterable

    public Iterable<Key> keys() {

        return keys(min(), max());

    }

 

    // the keys between lo and hi, as anIterable

    public Iterable<Key> keys(Key lo, Keyhi) {

        Queue<Key> queue = newLinkedList<Key>();

        // if (isEmpty() || lo.compareTo(hi)> 0) return queue;

        keys(root, queue, lo, hi);

        return queue;

    }

 

    // add the keys between lo and hi in thesubtree rooted at x

    // to the queue

    private void keys(Node x, Queue<Key>queue, Key lo, Key hi) {

        if (x == null) return;

        int cmplo = lo.compareTo(x.key);

        int cmphi = hi.compareTo(x.key);

        if (cmplo < 0) keys(x.left, queue,lo, hi);

        if (cmplo <= 0 && cmphi>= 0) queue.add(x.key);

        if (cmphi > 0) keys(x.right, queue,lo, hi);

    }

 

    // number keys between lo and hi

    public int size(Key lo, Key hi) {

        if (lo.compareTo(hi) > 0) return 0;

        if (contains(hi)) return rank(hi) -rank(lo) + 1;

        else              return rank(hi) - rank(lo);

    }

 

 

  /*************************************************************************

    * Check integrity of red-black BST data structure

   *************************************************************************/

    private boolean check() {

        if (!isBST())            System.out.println("Not insymmetric order");

        if (!isSizeConsistent())System.out.println("Subtree counts not consistent");

        if (!isRankConsistent())System.out.println("Ranks not consistent");

        if (!is23())             System.out.println("Not a 2-3tree");

        if (!isBalanced())       System.out.println("Notbalanced");

        return isBST() &&isSizeConsistent() && isRankConsistent() && is23() &&isBalanced();

    }

 

    // does this binary tree satisfy symmetricorder?

    // Note: this test also ensures that datastructure is a binary tree since order is strict

    private boolean isBST() {

        return isBST(root, null, null);

    }

 

    // is the tree rooted at x a BST with allkeys strictly between min and max

    // (if min or max is null, treat as emptyconstraint)

    // Credit: Bob Dondero's elegant solution

    private boolean isBST(Node x, Key min, Keymax) {

        if (x == null) return true;

        if (min != null &&x.key.compareTo(min) <= 0) return false;

        if (max != null &&x.key.compareTo(max) >= 0) return false;

        return isBST(x.left, min, x.key)&& isBST(x.right, x.key, max);

    }

 

    // are the size fields correct?

    private boolean isSizeConsistent() { returnisSizeConsistent(root); }

    private boolean isSizeConsistent(Node x) {

        if (x == null) return true;

        if (x.N != size(x.left) + size(x.right)+ 1) return false;

        return isSizeConsistent(x.left)&& isSizeConsistent(x.right);

    }

 

    // check that ranks are consistent

    private boolean isRankConsistent() {

        for (int i = 0; i < size(); i++)

            if (i != rank(select(i))) returnfalse;

        for (Key key : keys())

            if (key.compareTo(select(rank(key))) !=0) return false;

        return true;

    }

 

    // Does the tree have no red right links,and at most one (left)

    // red links in a row on any path?

    private boolean is23() { return is23(root);}

    private boolean is23(Node x) {

        if (x == null) return true;

        if (isRed(x.right)) return false;

        if (x != root && isRed(x)&& isRed(x.left))

            return false;

        return is23(x.left) &&is23(x.right);

    }

 

    // do all paths from root to leaf have samenumber of black edges?

    private boolean isBalanced() {

        int black = 0;     // number of black links on path from rootto min

        Node x = root;

        while (x != null) {

            if (!isRed(x)) black++;

            x = x.left;

        }

        return isBalanced(root, black);

    }

 

    // does every path from the root to a leafhave the given number of black links?

    private boolean isBalanced(Node x, intblack) {

        if (x == null) return black == 0;

        if (!isRed(x)) black--;

        return isBalanced(x.left, black)&& isBalanced(x.right, black);

    }

   /*****************************************************************************

     * Print Method

     *****************************************************************************/

   

    public void padding ( String ch, int n )

    {

      int i;

      for ( i = 0; i < n; i++ )

           System.out.printf(ch);

    }

       void print_node (Node root, int level )

    {

      if ( root == null )

      {

        padding ( "\t", level );

        System.out.println( "NIL" );

      }

      else

      {

        print_node ( root.right, level + 1 );

        padding ( "\t", level );

        if(root.color == BLACK)

        {

            System.out.printf("(%d)\n", root.key );

        }

        else

           System.out.printf( "%d\n",root.key );

       

       

        print_node ( root.left, level + 1 );

      }

    }

    void print_tree()

    {

        print_node(this.root,0);

       System.out.printf("-------------------------------------------\n");

    }

 

  /*****************************************************************************

    * Test client

   *****************************************************************************/

    public static void main(String[] args) {

        RedBlackBST<Integer, String> st =new RedBlackBST<Integer, String>();

        /*for (int i = 0; !StdIn.isEmpty();i++) {

            String key = StdIn.readString();

            st.put(key, i);

        }*/

        Random rm=new Random();

        for(int i=0;i<15;i++)

        {

           Strings=""+(char)('a'+Math.random()*('z'-'a'+1));

          

           st.put(rm.nextInt(60),s);

        }

        for (Integer i:st.keys())

            System.out.println(i + "" + st.get(i));

        System.out.println();

       

        st.print_tree();

      

    }

}


 

为了便于调试,将树打印出来很重要

这里参考

http://blog.chinaunix.net/uid-24774106-id-3440620.html

其中包括了为这个java版本的红黑树添加了一下打印方法

觉得这个方法很不错,利用递归,先打印右子树,再打印当前节点,最后打印左子树,

巧妙的将树横向打印了出来

/*****************************************************************************

     * Print Method

     *****************************************************************************/

   

    public void padding ( String ch, int n )

    {

      int i;

      for ( i = 0; i < n; i++ )

           System.out.printf(ch);

    }

       void print_node (Node root, int level )

    {

      if ( root == null )

      {

        padding ( "\t", level );

        System.out.println( "NIL" );

      }

      else

      {

        print_node ( root.right, level + 1 );

        padding ( "\t", level );

        if(root.color == BLACK)

        {

            System.out.printf("(%d)\n", root.key );

        }

        else

           System.out.printf( "%d\n",root.key );

       

       

        print_node ( root.left, level + 1 );

      }

    }

    void print_tree()

    {

        print_node(this.root,0);

       System.out.printf("-------------------------------------------\n");

    }


main方法测试

  public static void main(String[] args) {

        RedBlackBST<Integer, String> st =new RedBlackBST<Integer, String>();

        /*for (int i = 0; !StdIn.isEmpty();i++) {

            String key = StdIn.readString();

            st.put(key, i);

        }*/

        Random rm=new Random();

        for(int i=0;i<15;i++)

        {

           Strings=""+(char)('a'+Math.random()*('z'-'a'+1));

          

           st.put(rm.nextInt(60),s);

        }

        for (Integer i:st.keys())

            System.out.println(i + "" + st.get(i));

        System.out.println();

       

        st.print_tree();

      

    }

}


运行结果如下

 

你可能感兴趣的:(java,数据结构,红黑树,控制台打印)