kafka本地环境搭建与本地java代码测试
1、下载kafka
https://www.apache.org/dyn/closer.cgi?path=/kafka/0.8.2.1/kafka_2.9.2-0.8.2.1.tgz
2、解压
tar -zxf kafka_2.9.2-0.8.2.1.tgz
3.修改配置文件:%kafka_home/config目录下:
vim server.properties
(
############################# Server Basics #############################
# The id of the broker. This must be set to a unique integer for each broker.
broker.id=0
############################# Socket Server Settings #############################
# The port the socket server listens on
port=9092
# Hostname the broker will bind to. If not set, the server will bind to all interfaces
# 修改为主机ip,不然服务器返回给客户端的是主机的hostname,客户端并不一定能够识别
host.name=192.168.52.129
############################# Log Basics #############################
# A comma seperated list of directories under which to store log files
# 日志目录
log.dirs=/var/log/kafka
#zookeeper地址和端口
zookeeper.connect=192.168.52.129:2181
(2)zookeeper配置
vim zookeeper.properties
# the directory where the snapshot is stored.
dataDir=/var/zookeeper
dataLogDir=/var/log/zookeeper
# the port at which the clients will connect
clientPort=2181
# disable the per-ip limit on the number of connections since this is a non-production config
maxClientCnxns=100
# The number of milliseconds of each tick
tickTime=2000
# The number of ticks that the initial
# synchronization phase can take
initLimit=10
# The number of ticks that can pass between
# sending a request and getting an acknowledgement
syncLimit=5
4、启动zookeeper和kafka,编写了个脚本--startall.sh;
#!/bin/sh
#start zookeeper
sh zookeeper-server-start.sh ../config/zookeeper.properties > /tmp/log/zookeeper/zk-server-start.log &
#sleep 3 seconds
sleep 3
#start kafka
sh kafka-server-start.sh ../config/server.properties > /tmp/log/kafka/kafka-server-start.log &
5、使用kafka
Step 3: Create a topic(创建主题:test)
Let's create a topic named "test" with a single partition and only one replica:
> bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test
We can now see that topic if we run the list topic command:
> bin/kafka-topics.sh --list --zookeeper localhost:2181
test
Alternatively, instead of manually creating topics you can also configure your brokers to auto-create topics when a non-existent topic is published to.
Step 4: Send some messages
Kafka comes with a command line client that will take input from a file or from standard input and send it out as messages to the Kafka cluster. By default each line will be sent as a separate message.
Run the producer and then type a few messages into the console to send to the server.
> bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
This is a message
This is another message
Step 5: Start a consumer
Kafka also has a command line consumer that will dump out messages to standard output.
> bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning
This is a message
This is another message
心得总结:
1.produce启动的时候参数使用的是kafka的端口而consumer启动的时候使用的是zookeeper的端口;
2.必须先创建topic才能使用;
3.topic本质是以文件的形式储存在zookeeper上的。
二.JAVA编写代码测试
1.相关的依赖包
http://download.csdn.net/detail/alexander_zhou/9192011
2.生产者:
package cn.com.kafka.test;
import java.util.Properties;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
public class KafkaProducer {
private final Producer<String, String> producer;
public final static String TOPIC = "test";
private KafkaProducer() {
Properties props = new Properties();
// 此处配置的是kafka的端口
props.put("metadata.broker.list", "192.168.52.129:9092");
// 配置value的序列化类
props.put("serializer.class", "kafka.serializer.StringEncoder");
// 配置key的序列化类
props.put("key.serializer.class", "kafka.serializer.StringEncoder");
// request.required.acks
// 0, which means that the producer never waits for an acknowledgement
// from the broker (the same behavior as 0.7). This option provides the
// lowest latency but the weakest durability guarantees (some data will
// be lost when a server fails).
// 1, which means that the producer gets an acknowledgement after the
// leader replica has received the data. This option provides better
// durability as the client waits until the server acknowledges the
// request as successful (only messages that were written to the
// now-dead leader but not yet replicated will be lost).
// -1, which means that the producer gets an acknowledgement after all
// in-sync replicas have received the data. This option provides the
// best durability, we guarantee that no messages will be lost as long
// as at least one in sync replica remains.
props.put("request.required.acks", "-1");
producer = new Producer<String, String>(new ProducerConfig(props));
}
void produce() {
int messageNo = 1000;
final int COUNT = 2000;
while (messageNo < COUNT) {
String key = String.valueOf(messageNo);
String data = "hello kafka message " + key;
producer.send(new KeyedMessage<String, String>(TOPIC, key, data));
System.out.println(data);
messageNo++;
}
}
public static void main(String[] args) {
new KafkaProducer().produce();
}
}
3.消费者
package cn.com.kafka.test;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.serializer.StringDecoder;
import kafka.utils.VerifiableProperties;
public class KafkaConsumer {
private final ConsumerConnector consumer;
private KafkaConsumer() {
// Properties props = new Properties();
// // zookeeper 配置
// props.put("zookeeper.connect", "192.168.52.129:2181");
//
// // group 代表一个消费组
// props.put("group.id", "jd-group");
//
// // zk连接超时
// props.put("zookeeper.session.timeout.ms", "4000");
// props.put("zookeeper.sync.time.ms", "200");
// props.put("auto.commit.interval.ms", "1000");
// props.put("auto.offset.reset", "smallest");
// // 序列化类
// props.put("serializer.class", "kafka.serializer.StringEncoder");
Properties props = new Properties();
props.put("zookeeper.connect", "192.168.52.129:2181");
props.put("group.id", "group1");
props.put("zookeeper.session.timeout.ms", "10000"); //设置超时的时间要比较大
props.put("zookeeper.sync.time.ms", "200");
props.put("auto.commit.interval.ms", "1000");
ConsumerConfig config = new ConsumerConfig(props);
consumer = kafka.consumer.Consumer.createJavaConsumerConnector(config);
}
void consume() {
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(KafkaProducer.TOPIC, new Integer(1));
StringDecoder keyDecoder = new StringDecoder(new VerifiableProperties());
StringDecoder valueDecoder = new StringDecoder(
new VerifiableProperties());
Map<String, List<KafkaStream<String, String>>> consumerMap = consumer
.createMessageStreams(topicCountMap, keyDecoder, valueDecoder);
KafkaStream<String, String> stream = consumerMap.get(
KafkaProducer.TOPIC).get(0);
ConsumerIterator<String, String> it = stream.iterator();
while (it.hasNext())
System.out.println("consumer is:"+it.next().message());
}
public static void main(String[] args) {
new KafkaConsumer().consume();
}
}
备注:连接Zookeeper时比较耗时间也说不定,于是将timeout值加大
参照网址:
http://blog.sina.com.cn/s/blog_3fe961ae01011o4z.html
http://www.open-open.com/lib/view/open1412991579999.html
http://www.zhixing123.cn/ubuntu/49444.html