本文出自 http://blog.csdn.net/shuangde800
题意:
给出一棵树 每个节点有权值 要求父节点和子节点不能同时取 求能够取得的最大值
思路:
树形dp的入门题
f[u][0]表示以u为顶点的子树,不选u点的情况下最大值
f[u][1]表示以u为顶点的子树,选u点的情况下最大值
那么,
代码:
/**========================================== * This is a solution for ACM/ICPC problem * * @author: shuangde * @blog: blog.csdn.net/shuangde800 * @email: [email protected] *===========================================*/ #include<iostream> #include<cstdio> #include<algorithm> #include<vector> #include<queue> #include<cmath> #include<cstring> using namespace std; typedef long long int64; const int INF = 0x3f3f3f3f; const double PI = acos(-1.0); const int MAXN = 6010; vector<int>adj[MAXN]; int indeg[MAXN]; int val[MAXN]; int f[MAXN][2]; int vis[MAXN]; int n, m; void dfs(int u){ vis[u] = true; f[u][0] = 0; f[u][1] = val[u]; for(int i=0; i<adj[u].size(); ++i){ int v = adj[u][i]; if(vis[v]) continue; dfs(v); f[u][0] += max(f[v][1], f[v][0]); f[u][1] += f[v][0]; } } int main(){ while(~scanf("%d", &n) && n){ for(int i=1; i<=n; ++i) adj[i].clear(); for(int i=1; i<=n; ++i) scanf("%d", &val[i]); memset(indeg, 0, sizeof(indeg)); int u, v; while(~scanf("%d%d", &v, &u) && v+u){ adj[u].push_back(v); ++indeg[v]; } memset(f, 0, sizeof(f)); for(int i=1; i<=n; ++i)if(!indeg[i]){ memset(vis, 0, sizeof(vis)); dfs(i); printf("%d\n", max(f[i][0], f[i][1])); break; } } return 0; }