hbase中的CoprocessorProtocol机制.
CoprocessorProtocol的原理比较简单,近似于一个mapreduce框架。由client将scan分解为面向多个region的请求,并行发送请求到多个region,然后client做一个reduce的操作,得到最后的结果。
先看一个例子,使用hbase的AggregationClient可以做到简单的面向单个column的统计。
@Test
public void testAggregationClient() throws Throwable {
LongColumnInterpreter columnInterpreter = new LongColumnInterpreter();
AggregationClient aggregationClient = new AggregationClient(
CommonConfig.getConfiguration());
Scan scan = new Scan();
scan.addColumn(ColumnFamilyName, QName1);
Long max = aggregationClient.max(TableNameBytes, columnInterpreter,
scan);
Assert.assertTrue(max.longValue() == 100);
Long min = aggregationClient.min(TableNameBytes, columnInterpreter,
scan);
Assert.assertTrue(min.longValue() == 20);
Long sum = aggregationClient.sum(TableNameBytes, columnInterpreter,
scan);
Assert.assertTrue(sum.longValue() == 120);
Long count = aggregationClient.rowCount(TableNameBytes,
columnInterpreter, scan);
Assert.assertTrue(count.longValue() == 4);
}
看下hbase的源码。AggregateImplementation
@Override
public <T, S> T getMax(ColumnInterpreter<T, S> ci, Scan scan)
throws IOException {
T temp;
T max = null;
InternalScanner scanner = ((RegionCoprocessorEnvironment) getEnvironment())
.getRegion().getScanner(scan);
List<KeyValue> results = new ArrayList<KeyValue>();
byte[] colFamily = scan.getFamilies()[0];
byte[] qualifier = scan.getFamilyMap().get(colFamily).pollFirst();
// qualifier can be null.
try {
boolean hasMoreRows = false;
do {
hasMoreRows = scanner.next(results);
for (KeyValue kv : results) {
temp = ci.getValue(colFamily, qualifier, kv);
max = (max == null || (temp != null && ci.compare(temp, max) > 0)) ? temp : max;
}
results.clear();
} while (hasMoreRows);
} finally {
scanner.close();
}
log.info("Maximum from this region is "
+ ((RegionCoprocessorEnvironment) getEnvironment()).getRegion()
.getRegionNameAsString() + ": " + max);
return max;
}
这里由于
byte[] colFamily = scan.getFamilies()[0];
byte[] qualifier = scan.getFamilyMap().get(colFamily).pollFirst();
所以,hbase自带的Aggregate函数,只能面向单列进行统计。
当我们想对多列进行Aggregate,并同时进行countRow时,有以下选择。
1 scan出所有的row,程序自己进行Aggregate和count。
2 使用AggregationClient,调用多次,得到所有的结果。由于多次调用,有一致性问题。
3 自己扩展CoprocessorProtocol。
首先我们可以写一个protocol的通用框架。
定义protocol接口。
public interface CommonCoprocessorProtocol extends CoprocessorProtocol {
public static final long VERSION = 345L;
public <T> T handle(KeyValueListHandler<T> handler, Scan scan)
throws IOException;
}
定义该protocol的实现。
public class CommonEndpointImpl extends BaseEndpointCoprocessor implements
CommonCoprocessorProtocol {
protected static Log log = LogFactory.getLog(CommonEndpointImpl.class);
@Override
public ProtocolSignature getProtocolSignature(String protocol,
long version, int clientMethodsHashCode) throws IOException {
if (CommonCoprocessorProtocol.class.getName().equals(protocol)) {
return new ProtocolSignature(CommonCoprocessorProtocol.VERSION,
null);
}
throw new IOException("Unknown protocol: " + protocol);
}
@Override
public <T> T handle(KeyValueListHandler<T> handler, Scan scan)
throws IOException {
InternalScanner scanner = ((RegionCoprocessorEnvironment) getEnvironment())
.getRegion().getScanner(scan);
List<KeyValue> results = new ArrayList<KeyValue>();
T t = handler.getInitValue();
try {
boolean hasMoreRows = false;
do {
hasMoreRows = scanner.next(results);
t = handler.handle(results, t);
results.clear();
} while (hasMoreRows);
} finally {
scanner.close();
}
return t;
}
}
定义一个KeyValueListHandler。
public interface KeyValueListHandler<T> extends Writable {
public T getInitValue();
public T handle(List<KeyValue> keyValues, T t);
}
定义一个reduce。
public interface ClientReducer<T, R> {
public R getInitValue();
public R reduce(R r, T t);
}
定义一个client。
public class CpClient {
private HTableInterface table;
public CpClient(HTableInterface table) {
this.table = table;
}
public <T, R> R call(final KeyValueListHandler<T> handler,
final ClientReducer<T, R> reducer, final Scan scan)
throws Throwable {
class MyCallBack implements Batch.Callback<T> {
R r = reducer.getInitValue();
R getResult() {
return r;
}
@Override
public synchronized void update(byte[] region, byte[] row, T result) {
r = reducer.reduce(r, result);
}
}
MyCallBack myCallBack = new MyCallBack();
try {
table.coprocessorExec(CommonCoprocessorProtocol.class,
scan.getStartRow(), scan.getStopRow(),
new Batch.Call<CommonCoprocessorProtocol, T>() {
@Override
public T call(CommonCoprocessorProtocol instance)
throws IOException {
return instance.handle(handler, scan);
}
}, myCallBack);
} finally {
table.close();
}
return myCallBack.getResult();
}
}
这样,我们就有了一个protocol的通用框架。
假设我们要同时得到多个列的sum和结果的count,我们通过实现这些接口和定义一些request和result类来实现。
public class AggrRequest implements Writable {
private List<byte[]> families = new ArrayList<byte[]>();
private List<byte[]> qualifiers = new ArrayList<byte[]>();
public AggrRequest() {
}
public void add(String family, String qualifier) {
if (family != null && qualifier != null) {
this.families.add(Bytes.toBytes(family));
this.qualifiers.add(Bytes.toBytes(qualifier));
}
}
public int getColumnSize() {
return families.size();
}
public byte[] getFamily(int index) {
return families.get(index);
}
public byte[] getQualifer(int index) {
return qualifiers.get(index);
}
@Override
public void readFields(DataInput dataInput) throws IOException {
int size = dataInput.readInt();
for (int i = 0; i < size; i++) {
families.add(Bytes.toBytes(dataInput.readUTF()));
}
for (int i = 0; i < size; i++) {
qualifiers.add(Bytes.toBytes(dataInput.readUTF()));
}
}
@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeInt(getColumnSize());
for (byte[] b : families) {
dataOutput.writeUTF(Bytes.toString(b));
}
for (byte[] b : qualifiers) {
dataOutput.writeUTF(Bytes.toString(b));
}
}
}
public class AggrResult implements Writable {
private AggrRequest aggrRequest;
private long[] sum;
private long count;
public AggrResult() {
}
public AggrResult(AggrRequest aggrRequest) {
this.aggrRequest = aggrRequest;
sum = new long[aggrRequest.getColumnSize()];
}
public int getColumnSize() {
return aggrRequest.getColumnSize();
}
public byte[] getFamily(int index) {
return aggrRequest.getFamily(index);
}
public byte[] getQualifer(int index) {
return aggrRequest.getQualifer(index);
}
public long getSum(int index) {
return sum[index];
}
public void setSum(int index, long value) {
sum[index] = value;
}
// getter and setter.
public long getCount() {
return count;
}
public void setCount(long count) {
this.count = count;
}
@Override
public void readFields(DataInput dataInput) throws IOException {
int columnSize = dataInput.readInt();
sum = new long[columnSize];
for (int i = 0; i < columnSize; i++) {
sum[i] = dataInput.readLong();
}
count = dataInput.readLong();
aggrRequest = new AggrRequest();
aggrRequest.readFields(dataInput);
}
@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeInt(aggrRequest.getColumnSize());
for (long v : sum) {
dataOutput.writeLong(v);
}
dataOutput.writeLong(count);
aggrRequest.write(dataOutput);
}
}
public class AggrHandler implements KeyValueListHandler<AggrResult> {
private AggrRequest aggrRequest;
public AggrHandler() {
}
public AggrHandler(AggrRequest aggrRequest) {
this.aggrRequest = aggrRequest;
}
@Override
public void readFields(DataInput dataInput) throws IOException {
aggrRequest = new AggrRequest();
aggrRequest.readFields(dataInput);
}
@Override
public void write(DataOutput dataOutput) throws IOException {
aggrRequest.write(dataOutput);
}
@Override
public AggrResult getInitValue() {
AggrResult aggrResult = new AggrResult(aggrRequest);
return aggrResult;
}
@Override
public AggrResult handle(List<KeyValue> keyValues, AggrResult t) {
if (keyValues.isEmpty()) {
return t;
}
t.setCount(t.getCount() + 1);
int columnSize = t.getColumnSize();
for (int i = 0; i < columnSize; i++) {
byte[] family = t.getFamily(i);
byte[] qualifer = t.getQualifer(i);
for (KeyValue kv : keyValues) {
if (kv != null) {
if (Bytes.equals(qualifer, 0, qualifer.length,
kv.getBuffer(), kv.getQualifierOffset(),
kv.getQualifierLength())
&& Bytes.equals(family, 0, family.length,
kv.getBuffer(), kv.getFamilyOffset(),
kv.getFamilyLength())) {
if (kv.getValueLength() == Bytes.SIZEOF_LONG) {
long tem = Bytes.toLong(kv.getBuffer(),
kv.getValueOffset());
t.setSum(i, t.getSum(i) + tem);
}
}
}
}
}
return t;
}
}
public class AggrReducer implements ClientReducer<AggrResult, AggrResult> {
@Override
public AggrResult getInitValue() {
return null;
}
@Override
public AggrResult reduce(AggrResult r, AggrResult t) {
if (r == null)
return t;
if (t == null)
return r;
r.setCount(r.getCount() + t.getCount());
int columnSize = r.getColumnSize();
for (int i = 0; i < columnSize; i++) {
r.setSum(i, r.getSum(i) + t.getSum(i));
}
return r;
}
}
有了CoprocessorProtocol,可以扩展出来很多的功能,这个机制还是很强大的。
代码见
https://github.com/zhang-xzhi/simplehbase
并且有测试代码。