hbase的CoprocessorProtocol及一个简单的通用扩展实现V2
http://zhang-xzhi-xjtu.iteye.com/blog/2163321
hbase中的CoprocessorProtocol机制.
CoprocessorProtocol的原理比较简单,近似于一个mapreduce框架。由client将scan分解为面向多个region的请求,并行发送请求到多个region,然后client做一个reduce的操作,得到最后的结果。
先看一个例子,使用hbase的AggregationClient可以做到简单的面向单个column的统计。
@Test
public void testAggregationClient() throws Throwable {
LongColumnInterpreter columnInterpreter = new LongColumnInterpreter();
AggregationClient aggregationClient = new AggregationClient(
CommonConfig.getConfiguration());
Scan scan = new Scan();
scan.addColumn(ColumnFamilyName, QName1);
Long max = aggregationClient.max(TableNameBytes, columnInterpreter,
scan);
Assert.assertTrue(max.longValue() == 100);
Long min = aggregationClient.min(TableNameBytes, columnInterpreter,
scan);
Assert.assertTrue(min.longValue() == 20);
Long sum = aggregationClient.sum(TableNameBytes, columnInterpreter,
scan);
Assert.assertTrue(sum.longValue() == 120);
Long count = aggregationClient.rowCount(TableNameBytes,
columnInterpreter, scan);
Assert.assertTrue(count.longValue() == 4);
}
看下hbase的源码。AggregateImplementation
@Override
public <T, S> T getMax(ColumnInterpreter<T, S> ci, Scan scan)
throws IOException {
T temp;
T max = null;
InternalScanner scanner = ((RegionCoprocessorEnvironment) getEnvironment())
.getRegion().getScanner(scan);
List<KeyValue> results = new ArrayList<KeyValue>();
byte[] colFamily = scan.getFamilies()[0];
byte[] qualifier = scan.getFamilyMap().get(colFamily).pollFirst();
// qualifier can be null.
try {
boolean hasMoreRows = false;
do {
hasMoreRows = scanner.next(results);
for (KeyValue kv : results) {
temp = ci.getValue(colFamily, qualifier, kv);
max = (max == null || (temp != null && ci.compare(temp, max) > 0)) ? temp : max;
}
results.clear();
} while (hasMoreRows);
} finally {
scanner.close();
}
log.info("Maximum from this region is "
+ ((RegionCoprocessorEnvironment) getEnvironment()).getRegion()
.getRegionNameAsString() + ": " + max);
return max;
}
这里由于
byte[] colFamily = scan.getFamilies()[0];
byte[] qualifier = scan.getFamilyMap().get(colFamily).pollFirst();
所以,hbase自带的Aggregate函数,只能面向单列进行统计。
当我们想对多列进行Aggregate,并同时进行countRow时,有以下选择。
1 scan出所有的row,程序自己进行Aggregate和count。
2 使用AggregationClient,调用多次,得到所有的结果。由于多次调用,有一致性问题。
3 自己扩展CoprocessorProtocol。
首先我们可以写一个protocol的通用框架。
定义protocol接口。
public interface MyCoprocessorProtocol extends CoprocessorProtocol {
public static final long VERSION = 1L;
public <T> T handle(RowHandler<T> rowHandler, Scan scan) throws IOException;
}
定义该protocol的实现。
public class MyEndpointImpl extends BaseEndpointCoprocessor implements
MyCoprocessorProtocol {
protected static Log log = LogFactory.getLog(MyEndpointImpl.class);
@Override
public ProtocolSignature getProtocolSignature(String protocol,
long version, int clientMethodsHashCode) throws IOException {
if (MyCoprocessorProtocol.class.getName().equals(protocol)) {
return new ProtocolSignature(MyCoprocessorProtocol.VERSION, null);
}
throw new IOException("Unknown protocol: " + protocol);
}
@Override
public <T> T handle(RowHandler<T> rowHandler, Scan scan) throws IOException {
InternalScanner scanner = ((RegionCoprocessorEnvironment) getEnvironment())
.getRegion().getScanner(scan);
List<KeyValue> results = new ArrayList<KeyValue>();
T t = rowHandler.getInitValue();
try {
boolean hasMoreRows = false;
do {
hasMoreRows = scanner.next(results);
log.debug("scanner result : " + results + " hasMoreRows = "
+ hasMoreRows);
t = rowHandler.handle(results, t);
results.clear();
} while (hasMoreRows);
} finally {
scanner.close();
}
return t;
}
}
定义一个rowHandler。
public interface RowHandler<T> extends Writable {
public T getInitValue();
public T handle(List<KeyValue> keyValues, T t);
}
定义一个reduce。
public interface MyReducer<T, R> {
public R getInitValue();
public R reduce(R r, T t);
}
定义一个client。
public class MyClient {
HTableInterface table;
public MyClient(HTableInterface table) {
this.table = table;
}
public <T, R> R call(final byte[] tableName,
final RowHandler<T> howHandler, final MyReducer<T, R> myReducer,
final Scan scan) throws Throwable {
class MyCallBack implements Batch.Callback<T> {
R r = myReducer.getInitValue();
R getResult() {
return r;
}
@Override
public synchronized void update(byte[] region, byte[] row, T result) {
r = myReducer.reduce(r, result);
}
}
MyCallBack myCallBack = new MyCallBack();
try {
table.coprocessorExec(MyCoprocessorProtocol.class,
scan.getStartRow(), scan.getStopRow(),
new Batch.Call<MyCoprocessorProtocol, T>() {
@Override
public T call(MyCoprocessorProtocol instance)
throws IOException {
return instance.handle(howHandler, scan);
}
}, myCallBack);
} finally {
table.close();
}
return myCallBack.getResult();
}
}
这样,我们就有了一个protocol的通用框架。
假设我们要一个count的功能。
则只需要实现对应的handler和reducer。
public class CountHandler implements RowHandler<Long> {
@Override
public void readFields(DataInput arg0) throws IOException {
}
@Override
public void write(DataOutput arg0) throws IOException {
}
@Override
public Long getInitValue() {
return 0L;
}
@Override
public Long handle(List<KeyValue> keyValues, Long t) {
if (!keyValues.isEmpty()) {
return t + 1;
} else {
return t;
}
}
}
public class CountReducer implements MyReducer<Long, Long> {
@Override
public Long getInitValue() {
return 0L;
}
@Override
public Long reduce(Long r, Long t) {
return r + t;
}
}
假设我们要实现多个列的sum和全部结果的row,我们也只是通过添加hander,reducer和result来实现。
public class CountAndSumResult implements Writable {
private List<Long> resultList = new ArrayList<Long>();
private Long count = 0L;
public CountAndSumResult() {
}
public CountAndSumResult(int resultSize) {
for (int i = 0; i < resultSize; i++) {
resultList.add(0L);
}
}
public Long getCount() {
return count;
}
public void setCount(Long count) {
this.count = count;
}
public Long getSum(int i) {
return resultList.get(i);
}
public void setSum(int i, Long sum) {
resultList.set(i, sum);
}
public int getResultSize() {
return resultList.size();
}
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(count);
out.writeInt(resultList.size());
for (Long v : resultList) {
out.writeLong(v);
}
}
@Override
public void readFields(DataInput in) throws IOException {
count = in.readLong();
int size = in.readInt();
for (int i = 0; i < size; i++) {
resultList.add(in.readLong());
}
}
}
public class CountAndSumHandler implements RowHandler<CountAndSumResult> {
private List<String> columns = new ArrayList<String>();
public CountAndSumHandler() {
}
public CountAndSumHandler(List<String> columns) {
super();
this.columns = columns;
}
@Override
public void write(DataOutput out) throws IOException {
out.writeInt(columns.size());
for (String s : columns) {
out.writeUTF(s);
}
}
@Override
public void readFields(DataInput in) throws IOException {
int size = in.readInt();
for (int i = 0; i < size; i++) {
columns.add(in.readUTF());
}
}
@Override
public CountAndSumResult handle(List<KeyValue> keyValues,
CountAndSumResult t) {
if (!keyValues.isEmpty()) {
t.setCount(t.getCount() + 1);
}
for (int i = 0; i < columns.size(); i++) {
String column = columns.get(i);
for (KeyValue kv : keyValues) {
if (column.equals(Bytes.toString(kv.getQualifier()))) {
byte[] value = kv.getValue();
if (value == null || value.length == 0) {
} else {
Long tValue = Bytes.toLong(value);
t.setSum(i, t.getSum(i) + tValue);
}
break;
}
}
}
return t;
}
@Override
public CountAndSumResult getInitValue() {
return new CountAndSumResult(columns.size());
}
}
public class CountAndSumReducer implements
MyReducer<CountAndSumResult, CountAndSumResult> {
@Override
public CountAndSumResult getInitValue() {
return null;
}
@Override
public CountAndSumResult reduce(CountAndSumResult r, CountAndSumResult t) {
if (r == null) {
return t;
}
if (t == null) {
return r;
}
r.setCount(r.getCount() + t.getCount());
int size = r.getResultSize();
for (int i = 0; i < size; i++) {
r.setSum(i, r.getSum(i) + t.getSum(i));
}
return r;
}
}
有了CoprocessorProtocol,可以扩展出来很多的功能,这个机制还是很强大的。