hbase的CoprocessorProtocol及一个简单的通用扩展实现V1

hbase的CoprocessorProtocol及一个简单的通用扩展实现V2
http://zhang-xzhi-xjtu.iteye.com/blog/2163321


hbase中的CoprocessorProtocol机制.

CoprocessorProtocol的原理比较简单,近似于一个mapreduce框架。由client将scan分解为面向多个region的请求,并行发送请求到多个region,然后client做一个reduce的操作,得到最后的结果。


先看一个例子,使用hbase的AggregationClient可以做到简单的面向单个column的统计。
	@Test
	public void testAggregationClient() throws Throwable {

		LongColumnInterpreter columnInterpreter = new LongColumnInterpreter();

		AggregationClient aggregationClient = new AggregationClient(
				CommonConfig.getConfiguration());
		Scan scan = new Scan();

		scan.addColumn(ColumnFamilyName, QName1);

		Long max = aggregationClient.max(TableNameBytes, columnInterpreter,
				scan);
		Assert.assertTrue(max.longValue() == 100);

		Long min = aggregationClient.min(TableNameBytes, columnInterpreter,
				scan);
		Assert.assertTrue(min.longValue() == 20);

		Long sum = aggregationClient.sum(TableNameBytes, columnInterpreter,
				scan);
		Assert.assertTrue(sum.longValue() == 120);

		Long count = aggregationClient.rowCount(TableNameBytes,
				columnInterpreter, scan);
		Assert.assertTrue(count.longValue() == 4);

	}


看下hbase的源码。AggregateImplementation
@Override
  public <T, S> T getMax(ColumnInterpreter<T, S> ci, Scan scan)
      throws IOException {
    T temp;
    T max = null;
    InternalScanner scanner = ((RegionCoprocessorEnvironment) getEnvironment())
        .getRegion().getScanner(scan);
    List<KeyValue> results = new ArrayList<KeyValue>();
    byte[] colFamily = scan.getFamilies()[0];
    byte[] qualifier = scan.getFamilyMap().get(colFamily).pollFirst();
    // qualifier can be null.
    try {
      boolean hasMoreRows = false;
      do {
        hasMoreRows = scanner.next(results);
        for (KeyValue kv : results) {
          temp = ci.getValue(colFamily, qualifier, kv);
          max = (max == null || (temp != null && ci.compare(temp, max) > 0)) ? temp : max;
        }
        results.clear();
      } while (hasMoreRows);
    } finally {
      scanner.close();
    }
    log.info("Maximum from this region is "
        + ((RegionCoprocessorEnvironment) getEnvironment()).getRegion()
            .getRegionNameAsString() + ": " + max);
    return max;
  }

这里由于
    byte[] colFamily = scan.getFamilies()[0];
    byte[] qualifier = scan.getFamilyMap().get(colFamily).pollFirst();

所以,hbase自带的Aggregate函数,只能面向单列进行统计。

当我们想对多列进行Aggregate,并同时进行countRow时,有以下选择。
1 scan出所有的row,程序自己进行Aggregate和count。
2 使用AggregationClient,调用多次,得到所有的结果。由于多次调用,有一致性问题。
3 自己扩展CoprocessorProtocol。

首先我们可以写一个protocol的通用框架。
定义protocol接口。
public interface MyCoprocessorProtocol extends CoprocessorProtocol {

	public static final long VERSION = 1L;

	public <T> T handle(RowHandler<T> rowHandler, Scan scan) throws IOException;
}


定义该protocol的实现。
public class MyEndpointImpl extends BaseEndpointCoprocessor implements
		MyCoprocessorProtocol {

	protected static Log log = LogFactory.getLog(MyEndpointImpl.class);

	@Override
	public ProtocolSignature getProtocolSignature(String protocol,
			long version, int clientMethodsHashCode) throws IOException {
		if (MyCoprocessorProtocol.class.getName().equals(protocol)) {
			return new ProtocolSignature(MyCoprocessorProtocol.VERSION, null);
		}
		throw new IOException("Unknown protocol: " + protocol);
	}

	@Override
	public <T> T handle(RowHandler<T> rowHandler, Scan scan) throws IOException {

		InternalScanner scanner = ((RegionCoprocessorEnvironment) getEnvironment())
				.getRegion().getScanner(scan);
		List<KeyValue> results = new ArrayList<KeyValue>();
		T t = rowHandler.getInitValue();
		try {
			boolean hasMoreRows = false;

			do {
				hasMoreRows = scanner.next(results);
				log.debug("scanner result : " + results + " hasMoreRows = "
						+ hasMoreRows);
				t = rowHandler.handle(results, t);

				results.clear();
			} while (hasMoreRows);
		} finally {
			scanner.close();
		}
		return t;
	}
}


定义一个rowHandler。
public interface RowHandler<T> extends Writable {

	public T getInitValue();

	public T handle(List<KeyValue> keyValues, T t);
}


定义一个reduce。
public interface MyReducer<T, R> {

	public R getInitValue();

	public R reduce(R r, T t);
}


定义一个client。
public class MyClient {

	HTableInterface table;

	public MyClient(HTableInterface table) {
		this.table = table;
	}

	public <T, R> R call(final byte[] tableName,
			final RowHandler<T> howHandler, final MyReducer<T, R> myReducer,
			final Scan scan) throws Throwable {

		class MyCallBack implements Batch.Callback<T> {
			R r = myReducer.getInitValue();

			R getResult() {
				return r;
			}

			@Override
			public synchronized void update(byte[] region, byte[] row, T result) {
				r = myReducer.reduce(r, result);
			}
		}

		MyCallBack myCallBack = new MyCallBack();

		try {
			table.coprocessorExec(MyCoprocessorProtocol.class,
					scan.getStartRow(), scan.getStopRow(),
					new Batch.Call<MyCoprocessorProtocol, T>() {
						@Override
						public T call(MyCoprocessorProtocol instance)
								throws IOException {
							return instance.handle(howHandler, scan);
						}
					}, myCallBack);
		} finally {
			table.close();
		}

		return myCallBack.getResult();
	}
}


这样,我们就有了一个protocol的通用框架。
假设我们要一个count的功能。
则只需要实现对应的handler和reducer。

public class CountHandler implements RowHandler<Long> {

	@Override
	public void readFields(DataInput arg0) throws IOException {
	}

	@Override
	public void write(DataOutput arg0) throws IOException {
	}

	@Override
	public Long getInitValue() {
		return 0L;
	}

	@Override
	public Long handle(List<KeyValue> keyValues, Long t) {
		if (!keyValues.isEmpty()) {
			return t + 1;
		} else {
			return t;
		}
	}

}

public class CountReducer implements MyReducer<Long, Long> {

	@Override
	public Long getInitValue() {
		return 0L;
	}

	@Override
	public Long reduce(Long r, Long t) {
		return r + t;
	}
}



假设我们要实现多个列的sum和全部结果的row,我们也只是通过添加hander,reducer和result来实现。
public class CountAndSumResult implements Writable {

	private List<Long> resultList = new ArrayList<Long>();

	private Long count = 0L;

	public CountAndSumResult() {
	}

	public CountAndSumResult(int resultSize) {
		for (int i = 0; i < resultSize; i++) {
			resultList.add(0L);
		}
	}

	public Long getCount() {
		return count;
	}

	public void setCount(Long count) {
		this.count = count;
	}

	public Long getSum(int i) {
		return resultList.get(i);
	}

	public void setSum(int i, Long sum) {
		resultList.set(i, sum);
	}

	public int getResultSize() {
		return resultList.size();
	}

	@Override
	public void write(DataOutput out) throws IOException {
		out.writeLong(count);
		out.writeInt(resultList.size());
		for (Long v : resultList) {
			out.writeLong(v);
		}
	}

	@Override
	public void readFields(DataInput in) throws IOException {
		count = in.readLong();
		int size = in.readInt();
		for (int i = 0; i < size; i++) {
			resultList.add(in.readLong());
		}
	}

}


public class CountAndSumHandler implements RowHandler<CountAndSumResult> {

	private List<String> columns = new ArrayList<String>();

	public CountAndSumHandler() {
	}

	public CountAndSumHandler(List<String> columns) {
		super();
		this.columns = columns;
	}

	@Override
	public void write(DataOutput out) throws IOException {
		out.writeInt(columns.size());
		for (String s : columns) {
			out.writeUTF(s);
		}

	}

	@Override
	public void readFields(DataInput in) throws IOException {
		int size = in.readInt();
		for (int i = 0; i < size; i++) {
			columns.add(in.readUTF());
		}
	}

	@Override
	public CountAndSumResult handle(List<KeyValue> keyValues,
			CountAndSumResult t) {

		if (!keyValues.isEmpty()) {
			t.setCount(t.getCount() + 1);
		}

		for (int i = 0; i < columns.size(); i++) {
			String column = columns.get(i);
			for (KeyValue kv : keyValues) {
				if (column.equals(Bytes.toString(kv.getQualifier()))) {
					byte[] value = kv.getValue();
					if (value == null || value.length == 0) {
					} else {
						Long tValue = Bytes.toLong(value);
						t.setSum(i, t.getSum(i) + tValue);
					}
					break;
				}
			}
		}

		return t;
	}

	@Override
	public CountAndSumResult getInitValue() {
		return new CountAndSumResult(columns.size());
	}

}


public class CountAndSumReducer implements
		MyReducer<CountAndSumResult, CountAndSumResult> {

	@Override
	public CountAndSumResult getInitValue() {
		return null;
	}

	@Override
	public CountAndSumResult reduce(CountAndSumResult r, CountAndSumResult t) {
		if (r == null) {
			return t;
		}
		if (t == null) {
			return r;
		}
		r.setCount(r.getCount() + t.getCount());

		int size = r.getResultSize();
		for (int i = 0; i < size; i++) {
			r.setSum(i, r.getSum(i) + t.getSum(i));
		}
		return r;
	}

}


有了CoprocessorProtocol,可以扩展出来很多的功能,这个机制还是很强大的。

你可能感兴趣的:(protocol)