Hibernate程序性能优化

转载:http://developer.weaseek.com/2008/0819/50013192_1.shtml

 

本文依照HIBERNATE帮助文档,一些网络书籍及项目经验整理而成,只提供要点和思路,具体做法可以探讨,或是找一些更详细更有针对性的资料。

初用HIBERNATE的人也许都遇到过性能问题,实现同一功能,用HIBERNATE与用JDBC性能相差十几倍很正常,如果不及早调整,很可能影响整个项目的进度。

大体上,对于HIBERNATE性能调优的主要考虑点如下:

Ø 数据库设计调整

Ø HQL优化

Ø API的正确使用(如根据不同的业务类型选用不同的集合及查询API)

Ø 主配置参数(日志,查询缓存,fetch_size, batch_size等)

Ø 映射文件优化(ID生成策略,二级缓存,延迟加载,关联优化)

Ø 一级缓存的管理

Ø 针对二级缓存,还有许多特有的策略

Ø 事务控制策略。

1、 数据库设计

a) 降低关联的复杂性

b) 尽量不使用联合主键

c) ID的生成机制,不同的数据库所提供的机制并不完全一样

d) 适当的冗余数据,不过分追求高范式

2、 HQL优化

HQL如果抛开它同HIBERNATE本身一些缓存机制的关联,HQL的优化技巧同普通的SQL优化技巧一样,可以很容易在网上找到一些经验之谈。

3、 主配置

a) 查询缓存,同下面讲的缓存不太一样,它是针对HQL语句的缓存,即完全一样的语句再次执行时可以利用缓存数据。但是,查询缓存在一个交易系统(数据变更频繁,查询条件相同的机率并不大)中可能会起反作用:它会白白耗费大量的系统资源但却难以派上用场。

b) fetch_size,同JDBC的相关参数作用类似,参数并不是越大越好,而应根据业务特征去设置

c) batch_size同上。

d) 生产系统中,切记要关掉SQL语句打印。

4、 缓存

a) 数据库级缓存:这级缓存是最高效和安全的,但不同的数据库可管理的层次并不一样,比如,在ORACLE中,可以在建表时指定将整个表置于缓存当中。

b) SESSION缓存:在一个HIBERNATE SESSION有效,这级缓存的可干预性不强,大多于HIBERNATE自动管理,但它提供清除缓存的方法,这在大批量增加/更新操作是有效的。比如,同时增加十万条记录,按常规方式进行,很可能会发现OutofMemeroy的异常,这时可能需要手动清除这一级缓存:Session.evict以及 Session.clear

c) 应用缓存:在一个SESSIONFACTORY中有效,因此也是优化的重中之重,因此,各类策略也考虑的较多,在将数据放入这一级缓存之前,需要考虑一些前提条件:

i. 数据不会被第三方修改(比如,是否有另一个应用也在修改这些数据?)

ii. 数据不会太大

iii. 数据不会频繁更新(否则使用CACHE可能适得其反)

iv. 数据会被频繁查询

v. 数据不是关键数据(如涉及钱,安全等方面的问题)。

缓存有几种形式,可以在映射文件中配置:read-only(只读,适用于很少变更的静态数据/历史数据),nonstrict-read- write,read-write(比较普遍的形式,效率一般),transactional(JTA中,且支持的缓存产品较少)

d) 分布式缓存:同c)的配置一样,只是缓存产品的选用不同,在目前的HIBERNATE中可供选择的不多,oscache, jboss cache,目前的大多数项目,对它们的用于集群的使用(特别是关键交易系统)都持保守态度。在集群环境中,只利用数据库级的缓存是最安全的。

5、 延迟加载

a) 实体延迟加载:通过使用动态代理实现

b) 集合延迟加载:通过实现自有的SET/LIST,HIBERNATE提供了这方面的支持

c) 属性延迟加载:

6、 方法选用

a) 完成同样一件事,HIBERNATE提供了可供选择的一些方式,但具体使用什么方式,可能用性能/代码都会有影响。显示,一次返回十万条记录 (List/Set/Bag/Map等)进行处理,很可能导致内存不够的问题,而如果用基于游标(ScrollableResults)或 Iterator的结果集,则不存在这样的问题。

b) Session的load/get方法,前者会使用二级缓存,而后者则不使用。

c) Query和list/iterator,如果去仔细研究一下它们,你可能会发现很多有意思的情况,二者主要区别(如果使用了Spring,在HibernateTemplate中对应find,iterator方法):

i. list只能利用查询缓存(但在交易系统中查询缓存作用不大),无法利用二级缓存中的单个实体,但list查出的对象会写入二级缓存,但它一般只生成较少的执行SQL语句,很多情况就是一条(无关联)。

ii. iterator则可以利用二级缓存,对于一条查询语句,它会先从数据库中找出所有符合条件的记录的ID,再通过ID去缓存找,对于缓存中没有的记录,再构造语句从数据库中查出,因此很容易知道,如果缓存中没有任何符合条件的记录,使用iterator会产生N+1条SQL语句(N为符合条件的记录数)

iii. 通过iterator,配合缓存管理API,在海量数据查询中可以很好的解决内存问题,如:

while(it.hasNext()){

YouObject bject = (YouObject)it.next();

session.evict(youObject);

sessionFactory.evice(YouObject.class, youObject.getId());

}

如果用list方法,很可能就出OutofMemory错误了。

iv. 通过上面的说明,我想你应该知道如何去使用这两个方法了。

7、 集合的选用

在HIBERNATE 3.1文档的“19.5. Understanding Collection performance”中有详细的说明。

8、 事务控制

事务方面对性能有影响的主要包括:事务方式的选用,事务隔离级别以及锁的选用

a) 事务方式选用:如果不涉及多个事务管理器事务的话,不需要使用JTA,只有JDBC的事务控制就可以。

b) 事务隔离级别:参见标准的SQL事务隔离级别

c) 锁的选用:悲观锁(一般由具体的事务管理器实现),对于长事务效率低,但安全。乐观锁(一般在应用级别实现),如在HIBERNATE中可以定义 VERSION字段,显然,如果有多个应用操作数据,且这些应用不是用同一种乐观锁机制,则乐观锁会失效。因此,针对不同的数据应有不同的策略,同前面许多情况一样,很多时候我们是在效率与安全/准确性上找一个平衡点,无论如何,优化都不是一个纯技术的问题,你应该对你的应用和业务特征有足够的了解。

9、 批量操作

即使是使用JDBC,在进行大批数据更新时,BATCH与不使用BATCH有效率上也有很大的差别。我们可以通过设置batch_size来让其支持批量操作。

举个例子,要批量删除某表中的对象,如“delete Account”,打出来的语句,会发现HIBERNATE找出了所有ACCOUNT的ID,再进行删除,这主要是为了维护二级缓存,这样效率肯定高不了,在后续的版本中增加了bulk delete/update,但这也无法解决缓存的维护问题。也就是说,由于有了二级缓存的维护问题,HIBERNATE的批量操作效率并不尽如人意!

从前面许多要点可以看出,很多时候我们是在效率与安全/准确性上找一个平衡点,无论如何,优化都不是一个纯技术的问题,你应该对你的应用和业务特征有足够的了解,一般的,优化方案应在架构设计期就基本确定,否则可能导致没必要的返工,致使项目延期,而作为架构师和项目经理,还要面对开发人员可能的抱怨,必竟,我们对用户需求更改的控制力不大,但技术/架构风险是应该在初期意识到并制定好相关的对策。

还有一点要注意,应用层的缓存只是锦上添花,永远不要把它当救命稻草,应用的根基(数据库设计,算法,高效的操作语句,恰当API的选择等)才是最重要的。

 

 

 

转载:http://juxinsishui.bloghome.cn/posts/45944.html

 

有很多人认为Hibernate天生效率比较低,确实,在普遍情况下,需要将执行转换为SQL语句的Hibernate的效率低于直接JDBC存取,然而,在经过比较好的性能优化之后,Hibernate的性能还是让人相当满意的,特别是应用二级缓存之后,甚至可以获得比较不使用缓存的JDBC更好的性能,下面介绍一些通常的Hibernate的优化策略:
    1.抓取优化
    抓取是指Hibernate如何在关联关系之间进行导航的时候,Hibernate如何获取关联对象的策略,其主要定义了两个方面:如何抓取和何时抓取
    1)如何抓取。
    Hibernate3主要有两种种抓取方式,分.应用于对象关联实例(many-to-one、one-to-one)和对象关联集合(set、map等),总共是四种变种
    JOIN抓取: 通过在SELECT语句中使用OUTER JOIN来获得对象的关联实例或者关联集合)
    SELECT抓取: 另外发送一条SELECT语句来抓取当前对象的关联实体和集合
    在我的开发经历中,此处对性能的优化是比较有限的,并不值得过多关注
    例:
    A.应用于对象关联实例(默认是false)
    <many-to-one name=".." outer-join="true/false/auto"  .../> 
    B.应用于对象关联集合(默认是auto)
    <set name=".." fetch="join/select" ... >
       ....
    </set>
    2)何时抓取
    主要分为延迟加载和立即抓取,默认的情况下Hibernate3对对象关联实采用延迟加载,普通属性采用立即抓取,通过延迟加载和采用适当的抓取粒度,与不采用优化相比往往可以将性能提升数倍
    立即抓取:当抓取宿主对象时,同时抓取其关联对象和关联集以及属性
    延迟加载:当抓取宿主对象时,并不抓取其关联对象,而是当对其对象进行调用时才加载
    例:
    A.应用于对象关联实例(默认是延迟加载)
    <many-to-one name=".."  lazy="true/false" .../> 
    B.应用于对象关联集合(默认是延迟加载)
    <set name=".." lazy="true/false" ... >
       ....
    </set>
    对于延迟加载,需要注意的时,对延迟对象的使用必须在Session关闭之前进行,Hibernate的LazyInitalizationException往往就是由于在Session的生命期外使用了延迟加载的对象。当我们进行Web开发时,可以使用OpenSessionInView模式,当请求开始时打开session,当请求响应结束时才关闭session,不过,在使用OpenSessionInView模式时,需要注意如果响应时间比较长(业务比较复杂或者客户端是低速网络),将Session资源(也就是数据库的连接)占用太久的话可以会导致资源耗尽
    3)抓取粒度
    抓取粒度指的是对象在关联关系之间被导航时一次预先加载的数量,Hibernate程序的性能比较差往往就在于没有对抓取粒度仔细考虑,当加载一个列表并在列表中的每个对象中对其关联进行导航时,往往导致N+1条SQL语句查询。
    例:
    A.应用于对象关联实例(默认为1),注意,对对象关联实例的设置是在被关联的对象之上的,譬如
    class User
    {
        Group g;
    }
    那么抓取粒度应该在Group的配置文件之上,见下
    <class name="Group" table="group" batch-size="..">
        ...
    </class>
    对该值并没有一个约定俗成的值,根据情况而定,如果被关联表数据比较少,则可以设置地小一些,3-20,如果比较大则可以设到30-50,注意的时候,并不是越多越好,当其值超过50之后,对性能并没有多大改善但却无谓地消耗内存
    假设有如下例子:
       List<User> users = query.list();
    如果有20个User,并对这20个User及其Group进行遍历,如果不设置batch-size(即batch-size="1"),则在最糟糕的情况
    下,需要1 + 20条SQL语句,如果设置batch-size="10",则最好的情况下只需要1 + 2条SQL语句
    B.应用于对象关联集合(默认为1)
    <set name=".." batch-size="" ... >
       ....
    </set>
    2.二级缓存
    Hibernate对数据的缓存包括两个级:一级缓存,在Session的级别上进行,主要是对象缓存,以其id为键保存对象,在Session的生命期间存在;二级缓存,在SessionFactory的级别上进行,有对象缓存和查询缓存,查询缓存以查询条件为键保存查询结果,在SessionFactory的生命期间存在。默认地,Hibernate只启用一级缓存,通过正确地使用二级缓存,往往可以获得意想不到的性能。
    1)对象缓存:
    当抓取一个对象之后,Hiberate将其以id为键缓存起来,当下次碰到抓取id相同的对象时,可以使用如下配置
    方法1:在缓存对象上配置
    <class ...>
       <cache useage="read-only/write/...." regions="group" />
    </class>
    useage表示使用什么类型的缓存,譬如只读缓存、读写缓存等等(具体参见Hibernate参考指南),值得注意的时,有部分缓存在Hibernate的实现中不支持读写缓存,譬如JBossCache在Hibernate的实现中只是一种只读缓存,具体缓存实现对缓存类型的支持情况,可以参见org.hibernate.cache包
    regions表示缓存分块,大部分的缓存实现往往对缓存进行分块,该部分是可选的,详细参见各缓存实现
    方法2:在hibernate.cfg.xml中配置
    <cache class=".." useage=".." regions=".."/>
    我认为第二种更好,可以统一管理
    2)查询缓存
    查询时候将查询结果以查询条件为键保存起来,需要配置如下
    A.在hibernate.cfg.xml中配置(启用查询缓存)
    <property name="hibernate.cache.use_query_cache">true</property>  (前面的属性名可参见常量
org.hibernate.cfg.Enviroment.USE_QUERY_CACHE)
    B.程序
    query.setCacheable(true);
    query.setCacheRegions(...);
    需要注意的是,查询缓存与对象缓存要结合更有效,因为查询缓存仅缓存查询结果列表的主键数据
    一般情况下在开发中,对一些比较稳定而又被频繁引用的数据,譬如数据字典之类的,将其进行二级缓存,对一些查询条件和查询数据变化不频繁而又常常被使用的查询,将其进行二级缓存。由于二级缓存是放在内存中,而且Hibernate的缓存不是弱引用缓存(WeekReference),所以注意不要将大块的数据放入其中,否则可能会被内存造成比较大的压力。
    3.批量数据操作
    当进行大批量数据操作(几万甚至几十几百万)时,需要注意两点,一,批量提交,二,及时清除不需要的一级缓存数据
    1)所谓的批量提交,就是不要频繁使用session的flush,每一次进行flush,Hibernate将PO数据于数据库进行同步,对于海量级数据操作来说是性能灾难(同时提交几千条数据和提交一条数据flush一次性能差别可能会是几十倍的差异)。一般将数据操作放在事务中,当事务提交时Hibernate自动帮你进行flush操作。
    2)及时清除不需要的一级缓存数据:由于Hibernate默认采用一级缓存,而在session的生命期间,所有数据抓取之后会放入一级缓存中,而当数据规模比较庞大时,抓取到内存中的数据会让内存压力非常大,一般分批操作数据,被一次操作之后将一级缓存清除,譬如
    session.clear(User.class)
    4.杂项
    dynamic-insert,dynamic-update,动态插入和动态更新,指的是让Hibernate插入数据时仅插入非空数据,当修改数据时只修改变化的数据,譬如对于 
    class User
    {
       id
       username
       password
    }
    如果u.id=1, u.username="ayufox",u.password=null,那么如果不设置动态插入,则其sql语句是insert into users(id, username, password) values (1, 'ayufox', '),如果设置则其sql语句是insert into users(username) valeus('ayufox')
    在如上的情况下,如果修改u.password='11',那么如果不设置动态更新,则sql语句为update users set username='ayufox', password='11' where id = 1,如果设置则为update user set password='11' where d = 1
    设置是在class的映射文件中,如下
    <class name="User" table="users" dynamic=insert="true/false" dynamic-update="true/false" ...>
    </class>
  该设置对性能的提升比较有限

 

你可能感兴趣的:(sql,Hibernate,jdbc,配置管理,网络应用)