- CSS中的伪类与伪元素:让样式更加灵活优雅
程序员
CSS中的伪类与伪元素:让样式更加灵活优雅在CSS的世界里,伪类和伪元素是两个强大而优雅的特性,它们能让我们的样式代码更加简洁,同时提供更丰富的样式控制能力。今天,让我们深入了解这两个概念。一、伪类(Pseudo-classes)1.1什么是伪类?伪类用于定义元素的特殊状态。它们以单个冒号(:)开头,就像给元素添加了一个虚拟的类,但无需修改HTML结构。1.2常用伪类/*鼠标悬停状态*/butto
- Websoft9 开源软件实操平台:快速积累企业级软件技能,深入理解真实业务场景
开源创业
引言:打破“纸上谈兵”的实训困境当前高校技术教育普遍面临一个矛盾:学生对开源工具的理论知识掌握充分,但在真实业务场景中常因环境配置复杂、工具链割裂而难以落地。例如,部署一套完整的电商系统需协调数据库、服务器、安全策略等多环节,传统虚拟机环境难以模拟企业级复杂度。Websoft9作为开源软件自动化部署工具,通过预集成200+企业级应用模板(如GitLab、Odoo、Jenkins)和全流程管理能力,
- 使用LangChain实现大规模语言模型自发现推理结构
VYSAHF
langchain语言模型人工智能python
使用LangChain实现大规模语言模型自发现推理结构在现代自然语言处理(NLP)的研究中,大规模语言模型(LLMs)已经展示了强大的能力。然而,在应对复杂的推理问题时,传统的提示方法常常力不从心。这篇文章将带您了解SELF-DISCOVER,一种新兴的框架,如何通过LangChain来实现自动化、动态化的推理结构构建,以提高LLMs的性能。技术背景介绍大规模语言模型(如GPT-4和PaLM2)已
- C#搭建Json RPC2.0 Server/Client
Flora*.*
rpcc#
写在前面这篇文章写了改,改了写,中间耽搁好长时间,最终还是决定坚持写下来,因为我自己在学习这部分开发时也花了很长时间去理解,所以这篇文章也相当于是对我这部分开发和学习的一个总结,希望它能给你带来帮助。因为本人能力有限,所以文中有些写的不明白或者有错误的地方还请大佬批评指正,我也会不断在项目中进行总结,更新这篇文章,让其更加通俗易懂!背景介绍在MES项目开发中,我们不希望经常改动主程序,但因为不同客
- Apache Storm实时流处理的核心技术
Hello.Reader
大数据apachestorm大数据
1.引言ApacheStorm是一个开源的、分布式的实时计算系统,专为处理流式数据而设计。它能够处理大量数据流并在极低的延迟下提供实时的结果。相比于传统的批处理系统,Storm具有处理无限数据流的能力,支持非常高的可扩展性和容错机制。Storm可以适用于多种编程语言,具有高度的灵活性。1.1什么是ApacheStorm?ApacheStorm是一个流处理引擎,它可以持续处理不断到来的数据流(str
- AI:对比ChatGPT这类聊天机器人,人形机器人对人类有哪些不一样的影响?
InnoLink_1024
AGI人工智能机器学习chatgpt人工智能机器人
人形机器人与像ChatGPT这样的聊天机器人相比,虽然都属于人工智能技术的应用,但由于其具备的物理形态和与环境的互动能力,它们对人类的影响会有很大的不同。下面从多个角度进行对比,阐述它们各自对人类的不同影响:1.物理交互与虚拟交互人形机器人:具有物理形态,能够在物理世界中与人类进行直接交互。例如,搬运物品、进行日常家务、提供身体上的帮助(如扶持老人、帮助走路等),以及进行非语言的沟通(如手势、面部
- 使用 DingoDB 创建自查询检索器的实战演示
fgayif
python
DingoDB深入解析与实战演示DingoDB是一种分布式多模向量数据库,它结合了数据湖和向量数据库的特点,能够存储任何类型和大小的数据(如Key-Value、PDF、音频、视频等)。它具有实时低延迟处理能力,可以快速获取洞察并响应,还能高效进行即时分析和处理多模数据。在本教程中,我们将演示如何使用DingoDB向量存储来创建一个自查询检索器。技术背景介绍DingoDB的设计结合了数据湖的灵活性和
- 使用 DashVector 进行高效的矢量检索和自查询检索器演示
bavDHAUO
python
在当代AI应用中,向量数据的管理和检索是至关重要的部分。DashVector是一个完全托管的向量数据库服务,提供了对高维稠密和稀疏向量的支持,允许实时插入和过滤搜索。这个服务基于DAMOAcademy自研的高效向量引擎Proxima核心构建,具备云原生和横向扩展能力,能够快速适应不同应用需求。在本篇文章中,我们将演示如何使用DashVector和SelfQueryRetriever来高效地进行矢量
- A SURVEY ON POST-TRAINING OF LARGE LANGUAGE MODELS——大型语言模型的训练后优化综述——第9部分——应用
王金-太想进步了
语言模型人工智能自然语言处理
应用尽管预训练为大型语言模型(LLMs)赋予了强大的基础能力,但在部署于专业领域时,LLMs仍经常遇到持续的限制,包括上下文长度受限、容易产生幻觉(hallucination)、推理能力欠佳和固有的偏见。在现实世界的应用中,这些不足显得尤为重要,因为在这些场景中,精确性、可靠性和伦理一致性是至关重要的。这些问题引发了一些根本性的探讨:(1)如何系统地提高LLM的表现以满足特定领域的需求?(2)在实
- 2025年亚马逊多店铺运营的三大核心策略
跨境猫小妹
跨境电商大数据人工智能业界资讯经验分享
2025年亚马逊多店铺运营的三大核心策略随着跨境电商市场的日趋成熟,亚马逊卖家面临的竞争加剧,特别是拥有多个店铺的商家,更需要优化运营策略,提高盈利能力。进入2025年,亚马逊多店铺运营不再是简单的铺货,而是需要更精细的管理与系统化的运营。本篇文章将为你解析三大核心策略,助你高效管理多个店铺,提升市场竞争力。一、精细化选品与差异化布局1.数据驱动选品,提升市场竞争力多店铺运营的核心在于合理配置资源
- 斩获 44K 星!让 DeepSeek 控制你的浏览器,绝了
开源项目精选
人工智能
Browser-Use的开源框架,是一个能让电脑自动操作网页的智能工具。能处理动态加载的内容(比如广告弹窗、实时更新的图表),遇到网页元素位置变化还会自己调整策略,减少人工干预。Stars数46046Forks数4735主要特点强大的浏览器自动化功能:BrowserUse将先进的AI能力与强大的浏览器自动化技术相结合,为AI智能体实现流畅无缝的网页交互体验。视觉感知与HTML结构提取:将视觉理解能
- 人工智能的未来:从基础到前沿的探索与展望
小二爱编程·
人工智能aiAI编程AI写作AI作画
1.人工智能简介内容概述:人工智能(AI)是指模拟和执行人类智能任务的技术。随着计算能力和数据量的增加,AI在各个领域取得了显著进展,从自动化的基本任务到解决复杂的实际问题,人工智能正渗透到我们生活的各个方面。2.人工智能的种类与发展内容概述:AI的种类可以按智能的复杂度分为三大类:弱人工智能(NarrowAI):目前大多数应用都属于弱AI,如语音助手、自动驾驶等。它们专注于特定任务,并且无法扩展
- 知识蒸馏:从软标签压缩到推理能力迁移的工程实践(基于教师-学生模型的高效压缩技术与DeepSeek合成数据创新)
AI仙人掌
人工智能AI人工智能深度学习语言模型机器学习
知识蒸馏通过迁移教师模型(复杂)的知识到学生模型(轻量),实现模型压缩与性能平衡。核心在于利用教师模型的软标签(概率分布)替代独热编码标签,学生模型不仅学习到教师模型输出数据的类别信息,还能够捕捉到类别之间的相似性和关系,从而提升其泛化能力核心概念知识蒸馏的核心目标是实现从教师模型到学生模型的知识迁移。在实际应用中,无论是大规模语言模型(LLMs)还是其他类型的神经网络模型,都会通过softmax
- 迁移学习基础知识
zhooooooou
深度学习迁移学习人工智能机器学习
简介使用迁移学习的优势:1、能够快速的训练出一个理想的结果2、当数据集较小时也能训练出理想的效果。注意:在使用别人预训练的参数模型时,要注意别人的预处理方式。原理:对于浅层的网络结构,他们学习到的角点信息和纹理信息都是通用的,将学习好的浅层网络的信息迁移到新的网络中,这样新的网络也拥有了识别底层通用特征的能力,从而能加快网络学习新的数据集的高维特征。常见的迁移学习的方式:1、载入权重后训练所有参数
- 工业机器人:现代工业的智能力量
机器人之树小风
机器人科技经验分享
在当今科技飞速发展的时代,工业机器人已成为现代工业不可或缺的重要组成部分。它如同一位不知疲倦、高度精准且功能强大的“智能工匠”,以其独特的魅力和卓越的能力,深刻地改变着工业生产的面貌。工业机器人是一种能够自动执行任务的可编程机械装置。它通常由机械臂、控制系统和编程装置等部分组成。机械臂是机器人的主体结构,能够实现多自由度的灵活运动,模拟人类手臂的各种动作。控制系统则犹如机器人的“大脑”,负责指挥和
- YashanDB配置资源管理
数据库
YashanDB资源管理通过内置高级包DBMS_RESOURCE_MANAGER和相关配置参数提供对物理资源的配置能力。启用资源管理创建资源使用组调用DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP创建资源使用组。--创建名为LOW_GROUP和HIGH_GROUP的资源使用组,只有SYS用户才有权限执行EXECDBMS_RESOURCE_MANAGER.CR
- 深入解析Java跨平台原理
KBkongbaiKB
java开发语言
一、操作系统屏障的本质挑战源代码编译方式直接编译为机器码Windows的可执行文件.exeLinux的可执行文件.elfmacOS的可执行文件.machJava独特的中间格式字节码文件.classJVM虚拟机1.1传统语言的平台困局语言类型编译方式执行依赖跨平台能力C/C++直接生成机器码特定操作系统❌不可直接移植Python解释型执行Python解释器✅但性能较低Java字节码中间件JVM虚拟机
- Vite Plugin Inspect插件问题
听风说雨的人儿
前端javascript开发语言
有些小伙伴可能还不清楚,VitePluginInspect是由Antfu开发的一款Vite插件,它的目标是让Vue、React等框架的开发者能够更容易地查看和理解构建过程中经过转换的源码。通过集成到Vite环境中,Inspect插件可以在浏览器的开发者工具中直接展示ES模块、CSS、甚至是编译后的模板的原始状态,极大地增强了我们在实际开发中的调试能力windows命令以上这些大家需要注意,不然在使
- Go语言的默认参数
俞嫦曦
包罗万象golang开发语言后端
Go语言的默认参数探讨Go语言是一种简洁、高效且强类型的编程语言,凭借其优雅的语法和高并发处理能力,赢得了广泛的开发者青睐。在讨论Go语言的设计时,常常会提到它的一些特性,比如优雅的并发模型、强大的标准库以及易于部署等。然而,在功能丰富的编程语言中,一个常见的特性是在函数中使用默认参数。然而,Go语言的设计原则使得它并没有提供默认参数的直接支持。本文将深入探讨Go语言中的默认参数问题,分析其背后的
- Lisp语言的云存储
俞嫦曦
包罗万象golang开发语言后端
Lisp语言的云存储:构建智能化数据管理新时代引言随着信息技术的飞速发展,数据的生产和存储呈现出爆炸式增长。云存储作为一种新兴的数据管理方式,逐渐成为各行业必不可少的基础设施。尤其是在大数据、人工智能等领域,对数据的快速访问和高效存储要求尤为迫切。与此同时,Lisp语言作为一种历史悠久且具有强大表达能力的编程语言,通过其特有的特性,可以在云存储的架构设计与实现方面发挥独特的优势。本文将深入探讨Li
- GPT-4o mini小型模型具备卓越的文本智能和多模态推理能力
FlowUs息流使用宝典
GPT-4omini
GPT-4omini是首个应用OpenAI指令层次结构方法的模型,这有助于增强模型抵抗越狱、提示注入和系统提示提取的能力。这使得模型的响应更加可靠,并有助于在大规模应用中更安全地使用。GPT-4omini在学术基准测试中,无论是在文本智能还是多模态推理方面,都超越了GPT-3.5Turbo和其他小型模型,并支持与GPT-4o相同的语言范围。它在函数调用方面也表现出色,这使开发者能够构建应用程序来从
- 用 C++ 打造综合管理系统:功能实现与代码解析
他是只猫
C++教程c++算法学习开发语言
文章目录系统功能概述设计与实现可逆素数模块计算数字总和模块各位数字之和排序模块字符串中的最大整数模块字符串解压模块输出指定图形模块计算学生信息操作之最高分模块字符串反转模块菜单界面与主函数总结完整代码在C++编程学习过程中,将所学知识应用到实际项目里是提升编程能力的有效途径。今天,我们就来构建一个综合管理系统,这个系统集成了多个实用功能模块,能帮助我们解决不同类别的问题。通过这个项目,我们不仅能巩
- 车载通信架构 --- UB位更新策略记录
车载诊断技术
车载通信架构架构车载通信架构UB位更新策略记录电子电气架构
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师:简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活,除了生存温饱问题之外,没有什么过多的欲望,表面看起来很高冷,内心热情,如果你身边有这样灵性的人,一定要好好珍惜他们眼中有神有光,干净,给人感觉很舒服,有超强的感知能力有形的无形的感知力很强,能感知人的内心变化喜欢独处,好静,
- 电子电气架构 --- 汽车面对软件怎么“破局“?
车载诊断技术
思考汽车行业架构汽车汽车面对软件怎么破局电子电器框架人工智能数据库智能电动汽车概述
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师:人生是一场骗局,最大的任务根本不是什么买车买房,也不是及时行乐,这就是欲望,不是理想,是把自己对生命的希望寄托在外物上,正确的做法应该是内求,无论遇到什么坎坷都能够随时调动自己的能力,出生没办法选择,婚姻也只能靠运气,唯一能让自己过好这一生的本领就是看待世界的方法,这世界看似纷纷扰扰
- 5G时代新基建:边缘节点如何将云计算响应速度提升300%“
云上的阿七
5G云计算
随着5G技术的普及,云计算正在迈向一个全新的阶段。传统云计算模式虽然提供了强大的算力和存储能力,但由于数据中心与用户终端的物理距离,网络时延问题始终是一个挑战。为了解决这一问题,边缘计算应运而生,并成为5G时代新基建的重要组成部分。本文将探讨边缘节点如何结合5G技术,将云计算响应速度提升300%,为企业和用户带来更流畅的数字体验。边缘计算的核心优势边缘计算(EdgeComputing)是一种分布式
- 24B参数模型碾压gpt4o-mini!推理速度超快!vLLM本地部署Mistral-Small 3.1+全方位测试多模态大模型!超越Gemma3.1,最适合企业项目的大模型!中文OCR能力也不弱
AI超元域
ocr人工智能aiAI编程aigc
本篇笔记所对应的视频https://www.bilibili.com/video/BV1Q9XLYiEwD/MistralAI最新推出的MistralSmall3.1模型无疑是近期科技界的一大亮点。这款由法国AI实验室MistralAI开发的开源多模态模型,以其卓越的性能和灵活性,为开发者、企业和研究人员带来了全新的可能性。凭借24B参数、对文本与图像的处理能力,以及在多个关键指标上的突破,Mis
- 开启行业智变新征程,腾讯云架构师技术沙龙邀你解锁DeepSeek实战应用
deepseek
引言从2025开年的惊艳登场,到逐步落地的价值兑现,DeepSeek正以实战为突破点,推动AI技术落地的深水区变革。随着其工程化能力与行业场景的深度耦合,DeepSeek已从“技术验证”迈入“场景攻坚”阶段,互联网、金融、制造等行业的标杆案例接连涌现,一场由实战驱动的行业智变浪潮正席卷而来。当技术红利转化为生产力,企业如何应对算力瓶颈与场景碎片化的双重挑战?从系统工程化集成到跨模态迁移学习,Dee
- DeepSeek高能低耗AI创作突破
智能计算研究中心
其他
内容概要随着人工智能技术向垂直领域加速渗透,生成式模型的应用边界正经历革命性拓展。DeepSeek系列产品通过670亿参数混合专家架构,构建起覆盖学术研究、内容创作与编程开发的多模态解决方案。该架构融合视觉语言理解与多语言处理能力,在保持高响应速度的同时,显著降低算力消耗,其单位计算成本仅为同类产品的三分之一。值得关注的是,系统搭载的DeepSeekProver学术引擎可自动生成文献综述框架,而D
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- 算力未来演进与多场景创新
智能计算研究中心
其他
内容概要算力作为数字经济的核心生产力,其技术架构与应用场景正经历多维突破。从技术架构层面来看,异构计算通过整合CPU、GPU、FPGA等多元芯片实现性能跃升,边缘计算则借助分布式节点降低时延并提升响应效率,而量子计算在特定领域的指数级加速潜力已进入验证阶段。在应用场景维度,工业互联网通过实时数据分析优化产线效率,智能安防依托视频流结构化处理增强预警能力,元宇宙则依赖高密度渲染与低延迟传输构建沉浸式
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多