贝叶斯并行分类分析

1 贝叶斯训练器

所在包:Package org.apache.mahout.classifier.bayes

实现机制

The implementation is divided up into three parts:

  1. The Trainer -- responsible for doing the counting of the words and the labels

  2. The Model -- responsible for holding the training data in a useful way

  3. The Classifier -- responsible for using the trainers output to determine the category of previously unseen documents

1 训练器

The trainer is manifested in several classes:

  1. BayesDriver

    创建 Hadoop 贝叶斯作业,输出模型,这个类封装了 4 map/reduce 类。

  2. common.BayesFeatureDriver

  3. common.BayesTfIdfDriver

  4. common.BayesWeightSummerDriver

  5. BayesThetaNormalizerDriver

训练器的输入是KeyValueTextInputFormat 格式,第一个字符时类标签,剩余的是特征(单词),如下面的格式:

hockey puck stick goalie forward defenseman referee ice checking slapshot helmet

 football field football pigskin referee helmet turf tackle
 

hockeyfootball 是类标签,剩下的是特征。

2 模型

你可能感兴趣的:(apache,hadoop,UP)