论文阅读-EMS: History-Driven Mutation for Coverage-based Fuzzing(2022)模糊测试
一、背景本文研究了基于覆盖率的模糊测试中的历史驱动变异技术。之前的研究主要采用自适应变异策略或集成约束求解技术来探索触发独特路径和崩溃的测试用例,但它们缺乏对模糊测试历史的细粒度重用,即它们在不同的模糊测试试验之间很大程度上未能正确利用模糊测试历史。本文提出了一种轻量级且高效的概率字节定向模型(PBOM),以捕获来自试验历史的字节级变异策略,并因此有效地触发独特路径和崩溃。本文还提出了一种新的历史