动态规划求解 最小花费

题目1086:最小花费

时间限制:1 秒

内存限制:32 兆

特殊判题:

提交:2082

解决:398

题目描述:
在某条线路上有N个火车站,有三种距离的路程,L1,L2,L3,对应的价格为C1,C2,C3.其对应关系如下:
距离s 票价
0<S<=L1 C1
L1<S<=L2 C2
L2<S<=L3 C3
输入保证0<L1<L2<L3<10^9,0<C1<C2<C3<10^9。
每两个站之间的距离不超过L3。
当乘客要移动的两个站的距离大于L3的时候,可以选择从中间一个站下车,然后买票再上车,所以乘客整个过程中至少会买两张票。
现在给你一个 L1,L2,L3,C1,C2,C3。然后是A B的值,其分别为乘客旅程的起始站和终点站。
然后输入N,N为该线路上的总的火车站数目,然后输入N-1个整数,分别代表从该线路上的第一个站,到第2个站,第3个站,……,第N个站的距离。
根据输入,输出乘客从A到B站的最小花费。

输入:
以如下格式输入数据:
L1 L2 L3 C1 C2 C3
A B
N
a[2]
a[3]
……
a[N]

输出:
可能有多组测试数据,对于每一组数据,
根据输入,输出乘客从A到B站的最小花费。

样例输入:
1 2 3 1 2 3
1 2
2
2
样例输出:
2

你可能感兴趣的:(动态规划)