单源点最短路径Dijkstra算法的JAVA实现

在城市智能交通中,经常会用到最短路径的问题,比如找最佳的行车路线等,Dijkstra算法做为最经典的求解方法,为我们指明了方向.不过真正想让我了解该算法的原因是在学习ICTCLAS的N-最短路径算法,虽然和我们常用的案例有一点区别,但基本相同,为了更好的理解N-最短路径算法,我又重新把大学时代的数据结构知识搬了出来。
  在网上找到一篇文章,非常详细生动(有FLASH动画演示)的描述了该算法的实现,不过第一页右下角的图终点那一列2和3弄反了,看的时候要注意 ,具体的算法描述不再赘述,请参考:
  http://student.zjzk.cn/course_ware/data_structure/web/tu/tu7.5.1.htm
  下面给出我的算法实现具体代码,为了更好的验证程序的正确性,在原来的基础上我又多加了几条边
  package sinboy.datastructure;   import java.util.ArrayList;   public class Dijkstra ...{   static ArrayList map = null;   static ArrayList redAgg = null;   static ArrayList blueAgg = null;   static Side[] parents = null;   public static void main(String[] args) ...{   // 初始化顶点集   int[] nodes = ...{ 0, 1, 3, 2, 4, 5,6 };   // 初始化有向权重图   map = new ArrayList();   map.add(new Side(0, 1, 10));   map.add(new Side(0, 3, 30));   map.add(new Side(0, 4, 100));   map.add(new Side(1, 2, 50));   map.add(new Side(2, 4, 10));   map.add(new Side(3, 2, 20));   map.add(new Side(3, 4, 60));   map.add(new Side(4, 5, 50));   map.add(new Side(3, 5, 60));   map.add(new Side(5, 6, 10));   map.add(new Side(3, 6, 80));   // 初始化已知最短路径的顶点集,即红点集,只加入顶点0   redAgg = new ArrayList();   redAgg.add(nodes[0]);   // 初始化未知最短路径的顶点集,即蓝点集   blueAgg = new ArrayList();   for (int i = 1; i < nodes.length; i++)   blueAgg.add(nodes[i]);   // 初始化每个顶点在最短路径中的父结点,及它们之间的权重,权重-1表示无连通   parents = new Side[nodes.length];   parents[0] = new Side(-1, nodes[0], 0);   for (int i = 0; i < blueAgg.size(); i++) ...{   int n = blueAgg.get(i);   parents[i + 1] = new Side(nodes[0], n, getWeight(nodes[0], n));   }   // 找从蓝点集中找出权重最小的那个顶点,并把它加入到红点集中   while (blueAgg.size() > 0) ...{   MinShortPath msp = getMinSideNode();   if(msp.getWeight()==-1)   msp.outputPath(nodes[0]);   else   msp.outputPath();   int node = msp.getLastNode();   redAgg.add(node);   // 如果因为加入了新的顶点,而导致蓝点集中的顶点的最短路径减小,则要重要设置   setWeight(node);   }   }   /** *//**   * 得到一个节点的父节点   *   * @param parents   * @param node   * @return   */   public static int getParent(Side[] parents, int node) ...{   if (parents != null) ...{   for (Side nd : parents) ...{   if (nd.getNode() == node) ...{   return nd.getPreNode();   }   }   }   return -1;   }   /** *//**   * 重新设置蓝点集中剩余节点的最短路径长度   *   * @param preNode   * @param map   * @param blueAgg   */   public static void setWeight(int preNode) ...{   if (map != null && parents != null && blueAgg != null) ...{   for (int node : blueAgg) ...{   MinShortPath msp=getMinPath(node);   int w1 = msp.getWeight();   if (w1 == -1)   continue;   for (Side n : parents) ...{   if (n.getNode() == node) ...{   if (n.getWeight() == -1 || n.getWeight() > w1) ...{   n.setWeight(w1);   n.setPreNode(preNode);//重新设置顶点的父顶点   break;   }   }   }   }   }   }   /** *//**   * 得到两点节点之间的权重   *   * @param map   * @param preNode   * @param node   * @return   */   public static int getWeight(int preNode, int node) ...{   if (map != null) ...{   for (Side s : map) ...{   if (s.getPreNode() == preNode && s.getNode() == node)   return s.getWeight();   }   }   return -1;   }   /** *//**   * 从蓝点集合中找出路径最小的那个节点   *   * @param map   * @param blueAgg   * @return   */   public static MinShortPath getMinSideNode() ...{   MinShortPath minMsp = null;   if (blueAgg.size() > 0) ...{   int index = 0;   for (int j = 0; j < blueAgg.size(); j++) ...{   MinShortPath msp = getMinPath(blueAgg.get(j));   if (minMsp == null || msp.getWeight()!=-1 && msp.getWeight() < minMsp.getWeight()) ...{   minMsp = msp;   index = j;   }   }   blueAgg.remove(index);   }   return minMsp;   }   /** *//**   * 得到某一节点的最短路径(实际上可能有多条,现在只考虑一条)   * @param node   * @return   */   public static MinShortPath getMinPath(int node) ...{   MinShortPath msp = new MinShortPath(node);   if (parents != null && redAgg != null) ...{   for (int i = 0; i < redAgg.size(); i++) ...{   MinShortPath tempMsp = new MinShortPath(node);   int parent = redAgg.get(i);   int curNode = node;   while (parent > -1) ...{   int weight = getWeight(parent, curNode);   if (weight > -1) ...{   tempMsp.addNode(parent);   tempMsp.addWeight(weight);   curNode = parent;   parent = getParent(parents, parent);   } else   break;   }   if (msp.getWeight() == -1 || tempMsp.getWeight()!=-1 && msp.getWeight() > tempMsp.getWeight())   msp = tempMsp;   }   }   return msp;   }   }   /** *//**   * 图中的有向边,包括节点名及他的一个前向节点名,和它们之间的权重   *   */   class Side ...{   private int preNode; // 前向节点   private int node;// 后向节点   private int weight;// 权重   public Side(int preNode, int node, int weight) ...{   this.preNode = preNode;   this.node = node;   this.weight = weight;   }   public int getPreNode() ...{   return preNode;   }   public void setPreNode(int preNode) ...{   this.preNode = preNode;   }   public int getNode() ...{   return node;   }   public void setNode(int node) ...{   this.node = node;   }   public int getWeight() ...{   return weight;   }   public void setWeight(int weight) ...{   this.weight = weight;   }   }   class MinShortPath ...{   private ArrayList nodeList;// 最短路径集   private int weight;// 最短路径   public MinShortPath(int node) ...{   nodeList = new ArrayList();   nodeList.add(node);   weight = -1;   }   public ArrayList getNodeList() ...{   return nodeList;   }   public void setNodeList(ArrayList nodeList) ...{   this.nodeList = nodeList;   }   public void addNode(int node) ...{   if (nodeList == null)   nodeList = new ArrayList();   nodeList.add(0, node);   }   public int getLastNode() ...{   int size = nodeList.size();   return nodeList.get(size - 1);   }   public int getWeight() ...{   return weight;   }   public void setWeight(int weight) ...{   this.weight = weight;   }   public void outputPath() ...{   outputPath(-1);   }   public void outputPath(int srcNode) ...{   String result = "[";   if (srcNode != -1)   nodeList.add(srcNode);   for (int i = 0; i < nodeList.size(); i++) ...{   result += "" + nodeList.get(i);   if (i < nodeList.size() - 1)   result += ",";   }   result += "]:" + weight;   System.out.println(result);   }   public void addWeight(int w) ...{   if (weight == -1)   weight = w;   else   weight += w;   }   }
  运行结果如下:
  [0,1]:10
  [0,3]:30
  [0,3,2]:50
  [0,3,2,4]:60
  [0,3,5]:90
  [0,3,5,6]:100
  总结:最短路径算法关键先把已知最短路径顶点集(只有一个源点)和未知的顶点分开,然后依次把未知集合的顶点按照最短路径(这里特别强调一下是源点到该顶点的路径权重和,不仅仅是指它和父结点之间的权重,一开始就是在没有这个问题弄清楚)加入到已知结点集中。在加入时可以记录每个顶点的最短路径,也可以在加入完毕后回溯找到每个顶点的最短路径和权重。

你可能感兴趣的:(java,算法,Flash,J#,交通)