下面这种情况就是AMI调用:“斧头帮”大哥(客户端)叫小弟(服务器端)去干收租的活(远程调用),并且给小弟一把烟花炮竹(回调类)。嘱咐说: “我还有其它事情要打扫打扫,如果你的事情办完了,就放'OK'烟花;如果遇到反抗,就放'斧头'烟花!”(服务器答复)。说完,这位大哥就可以放心的做 其它事去了,直到看到天上烟花盛开,根据"OK"或"斧头"状再作处理。
AMI是针对客户端而言的,当客户端使用AMI发出远程调用时,客户端需要提供一个实现了回调接口的类用于接收通知。然后不等待调用完成立即返回,这时可以继续其它活动,当得到服务器端的答复时,客户端的回调类中的方法就会被执行。
例:修改原Helloworld 客户端,使用异步方法远程调用printString。
首先,要修改原来的Printer.ice定义文件,在printString方法前加上["ami"]元标识符。
module Demo
{
interface Printer
{
["ami" ] void printString(string s);
};
};
同样,再用slice2cpp Printer.ice生成Printer.h和Printer.cpp文件,并把这两个文件加入原项目(如果是直接修改之前的代码的话,因为原先已经加入了这两个文件,这步可以跳过)。
观察生成的Printer.h文件,可以找到这个定义:
namespace Demo
{
class AMI_Printer_printString : public ::IceInternal::OutgoingAsync
{
public :
virtual void ice_response() = 0;
virtual void ice_exception( const ::Ice::Exception&) = 0;
...
};
}
这里的AMI_Printer_printString 就是printString方法的AMI回调接口,可以发现它AMI回调接口类名的规律是AMI_类名_方法名。
这个接口提供了两个方法:
void ice_response(<params>);
表明操作已成功完成。各个参数代表的是操作的返回值及out 参数。如果操作的有一个非 void返回类型,ice_response 方法的第一个参数就是操作的返回值。操作的所有out 参数都按照声明时的次序,跟在返回值的后面。
void ice_exception(const Ice::Exception &);
表明抛出了本地或用户异常。
同时,slice2cpp还为Printer代理类生成了异步版本的printString方法:
namespace IceProxy //是代理类
{
namespace Demo
{
class Printer : virtual public ::IceProxy::Ice::Object
{
...
public :
bool printString_async( const ::Demo::AMI_Printer_printStringPtr&,
const ::std::string&);
bool printString_async( const ::Demo::AMI_Printer_printStringPtr&,
const ::std::string&, const ::Ice::Context&);
...
};
}
}
结合这两样东西(AMI_Printer_printString 接口和printString_async 方法),我们的客户端AMI调用方法为:
#include <ice/ice.h>
#include <printer.h>
using namespace std;
using namespace Demo;
//实现AMI_Printer_printString接口
struct APP : AMI_Printer_printString
{
virtual void ice_response()
{
cout << "printString完成" << endl;
}
virtual void ice_exception( const ::Ice::Exception& e)
{
cout << "出错啦:" << e << endl;
}
};
class MyApp: public Ice::Application{
public :
virtual int run( int argc, char *argv[])
{
Ice::CommunicatorPtr ic = communicator();
Ice::ObjectPrx base =
ic->stringToProxy("SimplePrinter:default -p 10000" );
Demo::PrinterPrx printer = PrinterPrx::checkedCast(base);
if (!printer) throw "Invalid Proxy!" ;
// 使用AMI异步调用
printer->printString_async(new APP, "Hello World!" );
cout << "做点其它的事情..." << endl;
system("pause" );
return 0;
}
};
int main( int argc, char * argv[])
{
MyApp app;
return app.main(argc,argv);
}
服务端代码不变,编译运行,效果应该是调用printer->printString_async之后还能"做点其它的事情...",当服务端完成后客户端收到通知,显示"printString完成"。
另外,为了突出异步效果,可以修改服务器端代码,故意把printString执行得慢一点:
AMD是针对服务器端而言的,在同步的情况下,服务器端收到一个调用请求后,在线程池中拿出一个空闲线程用于执行这个调用。这样,服务器在同一时刻所能支持的同步请求数受到线程池大小的限制。
如果线程池内的线程都在忙于执行长时间的操作,那么新的请求到来时就会处于长时间得不到答复的状态,这可能会造成客户端长时间等待(如果客户端没使用AMI的话)。
ICE的解决方法是:服务器收到请求时并不马上执行具体工作,而是把执行这项工作所需的参数以及回调类保存到一个地方(比如队列)后就返回。而另外的线程(或线程池)负责取出保存的参数并执行之,执行结束后使用回调类通知客户端工作已完成(或异常)。
还是用上面“斧头帮”来举例:“斧头帮”大哥(客户端)叫小弟(服务器端)去干收租的活(远程调用),这位小弟并不是马上就去收租去了,而是把这件 工作记录到他的日程表里(同时还有好几个老板叫他干活呢,可怜的人啊~~)。然后等有空的时候再按日程表一项项的做(或者叫其它有空的弟兄帮忙做),做完 工作后该放烟花的就放烟花(回调智能客户端),该砍人的就放信号弹啥的。
例:修改原Helloworld 服务器端,使用异步方法分派处理printString方法。
首先,要修改原来的Printer.ice定义文件,在printString方法前加上["amd"]元标识符。
module Demo{
interface Printer
{
["amd" ] void printString(string s);
};
};
同样,再用slice2cpp Printer.ice生成Printer.h和Printer.cpp文件,并把这两个文件加入原项目(如果是直接修改之前的代码的话,因为原先已经加入了这两个文件,这步可以跳过)。
观察生成的Printer.h文件,可以发现和AMI类似的一个回调接口AMD_Printer_printString :
namespace Demo
{
class AMD_Printer_printString : virtual public ::IceUtil::Shared
{
public :
virtual void ice_response() = 0;
virtual void ice_exception( const ::std::exception&) = 0;
virtual void ice_exception() = 0;
};
...
}
这个回调接口由ICE自己实现,我们只要拿来用就可以了。在哪里用呢?马上就会发现:我们要实现的Printer接口的printString 方法不见了,取而代之的是printString_async 方法:
namespace Demo
{
class Printer : virtual public ::Ice::Object
{
...
virtual void printString_async(
const ::Demo::AMD_Printer_printStringPtr&,
const ::std::string&, const ::Ice::Current& = ::Ice::Current()) = 0;
...
};
}
这个printString_async 方法就是我们要实现的异步分派方法,它的第一个参数就是由ICE实现的回调类AMD_Printer_printString ,在这个方法里,我们要两种方案:
#include <ice/ice.h>
#include "printer.h"
using namespace std;
using namespace Demo;
// 传递给线程函数的参数
struct CallbackEntry{
AMD_Printer_printStringPtr callback;
string str;
};
// 线程函数
DWORD WINAPI DoPrintString( LPVOID lpParameter)
{
// 取得参数
CallbackEntry *pCE = (CallbackEntry *)lpParameter;
// 工作:打印字符(延时1秒模拟长时间操作)
Sleep(1000);
cout << pCE->str << endl;
// 回调,工作完成。如果工作异常,则调用ice_exception();
pCE->callback->ice_response();
// 删除参数(这里使用堆直接传递,其实更好的方法是使用队列)
delete pCE;
return TRUE;
}
struct PrinterImp : Printer{
virtual void printString_async(
const AMD_Printer_printStringPtr &callback,
const string& s, const Ice::Current&)
{
// 参数打包(回调类和pringString方法的参数)
CallbackEntry *pCE = new CallbackEntry;
pCE->callback = callback;
pCE->str = s;
// 让Windows线程池来执行具体任务
::QueueUserWorkItem(DoPrintString,pCE,WT_EXECUTEDEFAULT);
}
};
class MyApp : public Ice::Application{
public :
virtual int run( int n, char * v[]){
Ice::CommunicatorPtr& ic = communicator();
Ice::ObjectAdapterPtr adapter
= ic->createObjectAdapterWithEndpoints("SP" , "default -p 10000" );
Ice::ObjectPtr object = new PrinterImp;
adapter->add(object, ic->stringToIdentity("SimplePrinter" ));
adapter->activate();
ic->waitForShutdown();
return 0;
}
};
int main( int argc, char * argv[])
{
MyApp app;
return app.main(argc, argv);
}
客户端不需要改变,编译运行服务器然后用客户端测试效果。(其实效果不是很明显,因为AMD提高的是服务器的负荷能力)