泛函编程(33)-泛函IO:Free Functor - Coyoneda

   在前几期讨论中我们终于推导出了Free Monad。这是一个Monad工厂,它可以把任何F[A]变成Monad。可惜的是它对F[A]是有所要求的:F必须是个Functor。Free Monad由此被称为由Functor F 产生的Monad。F必须是Functor,这个门槛使我们在使用Free Monad时很不方便。举个前面讨论过的例子:

1 trait Console[A] 2 case object GetLine extends Console[String] 3 case class PutLine(line: String) extends Console[Unit]

我们想用Free Monad把Console[A]变成Monad: Free[Console,A],但我们必须先得到Console的Functor实例:

1 implicit val consoleFunctor = new Functor[Console] { 2     def map[A,B](ca: Console[A])(f: A => B): Console[B] = ca match { 3         case GetLine => ?????
4         case PutLine(l) => ????
5  } 6 }

讲老实话,我到现在还没能想出如何实现这个map函数。除非把Console类型修改一下,这个可以参考前面讨论中的代码。

现在的问题是如果能有个什么方法把F[A]变成Functor,就像Free Monad那样有个Free Functor就好了。范畴学中Yoneda lemma结论中的Coyoneda就是一个Free Functor。

Yoneda lemma是这样推论的:如果我们有个这样的函数定义:def map[B](f: A => B): F[B],那我们就肯定能得出F[A]值,因为我们只需要把一个恒等函数当作f就能得到F[A]。反过来推论:如果我们有个F[A],F是任何Functor,A是任何类型,我们同样可以得出以上的map函数。我们可以用个类型来表示:

1 trait Yoneda[F[_],A] { 2    def map[B](f: A => B): F[B] 3 }

当然,这也意味着如果:有个类型B,一个函数(B => A),A是任意类型,一个F[B],F是任意Functor,我们肯定能得出F[A]:因为我们只要把(B => A)和F[B]传入map:

 map(fb: F[B])(f: B => A): F[A]。

我们同样可以用一个类型来表示:

1 trait Coyoneda[F[_],A] { coyo =>
2  type I 3  def fi: F[I] 4  def k(i: I): A 5 }

在下面我们可以证明F[A]同等Coyoneda[F,A],而Coyoneda是个Functor。我们只需将F[A]升格(lift)到Coyoneda就能得到一个Free Functor了。

 1 trait Functor[F[_]] {  2     def map[A,B](fa: F[A])(f: A => B): F[B]  3 }  4 object Functor {  5     def apply[F[_]: Functor]: Functor[F] = implicitly[Functor[F]]  6 }  7 trait Monad[M[_]] {  8  def unit[A](a: A): M[A]  9     def flatMap[A,B](ma: M[A])(f: A => M[B]): M[B] 10     def map[A,B](ma: M[A])(f: A => B) = flatMap(ma)(a => unit(f(a))) 11 } 12 object Monad { 13     def apply[M[_]: Monad]: Monad[M] = implicitly[Monad[M]] 14 } 15 trait Yoneda[F[_],A] { yo =>
16     def apply[B](f: A => B): F[B] 17     def run: F[A] = apply(a => a)  //无需Functor实例就可以将Yoneda转变成F[A]
18     def toCoyoneda: Coyoneda[F,A] = new Coyoneda[F,A] { //转Coyoneda无需Functor
19         type I = A 20         def fi = yo.run 21         def k(i: A) = i 22  } 23     def map[B](f: A => B): Yoneda[F,B] = new Yoneda[F,B] { //纯粹的函数组合 map fusion
24         def apply[C](g: B => C): F[C] = yo( f andThen g) 25  } 26 } 27 trait Coyoneda[F[_],A] { coyo =>
28  type I 29  def fi: F[I] 30  def k(i: I): A 31  def run(implicit F: Functor[F]): F[A] =  //Coyoneda转F需要F Functor实例
32  F.map(fi)(k) 33  def toYoneda(implicit F: Functor[F]): Yoneda[F,A] = new Yoneda[F,A] { //转Yoneda需要Functor
34      def apply[B](f: A => B): F[B] = F.map(fi)(k _ andThen f) 35  } 36  def map[B](f: A => B): Coyoneda[F,B] = new Coyoneda[F,B] { 37      type I = coyo.I 38      def fi = coyo.fi 39      def k(i: I) = f(coyo k i) 40  } 41 } 42 object Yoneda { 43     def apply[F[_]: Functor,A](fa: F[A]) = new Yoneda[F,A] { //F转Yoneda需要Functor
44         def apply[B](f: A => B): F[B] = Functor[F].map(fa)(f) 45  } 46     implicit def yonedaFunctor[F[_]] = new Functor[({type l[x] = Yoneda[F,x]})#l] { 47         def map[A,B](ya: Yoneda[F,A])(f: A => B) = ya map f 48         
49  } 50 } 51 object Coyoneda { 52     def apply[F[_],A](fa: F[A]): Coyoneda[F,A] = new Coyoneda[F,A] { 53         type I = A          //把F[A]升格成Coyoneda, F无须为Functor
54         def fi = fa 55         def k(a: A) = a 56  } 57     implicit def coyonedaFunctor[F[_]] = new Functor[({type l[x] = Coyoneda[F,x]})#l] { 58         def map[A,B](ca: Coyoneda[F,A])(f: A => B) = ca map f   //Coyoneda本身就是Functor
59  } 60 }

以上值得注意的是:F[A]可以直接升格等于Coyoneda,而Coyoneda是个Functor。换句话说我们把F[A]升格到Coyoneda就可以当Functor来用了。

我们的目的是把任何F[A]变成Free Monad,那么我们就需要有一个用Coyoneda产生的Free:

 1 trait Free[F[_],A] {  2  private case class FlatMap[B](a: Free[F,A], f: A => Free[F,B]) extends Free[F,B]  3  def unit(a: A): Free[F,A] = Return(a)  4  def flatMap[B](f: A => Free[F,B])(implicit F: Functor[F]): Free[F,B] = this match {  5      case Return(a) => f(a)  6      case Suspend(k) => Suspend(F.map(k)(a => a flatMap f))  7   case FlatMap(b,g) => FlatMap(b, g andThen (_ flatMap f))  8  }  9  
10  def map[B](f: A => B)(implicit F: Functor[F]): Free[F,B] = flatMap(a => Return(f(a))) 11  def resume(implicit F: Functor[F]): Either[F[Free[F,A]],A] = this match { 12      case Return(a) => Right(a) 13      case Suspend(k) => Left(k) 14      case FlatMap(a,f) => a match { 15          case Return(b) => f(b).resume 16          case Suspend(k) => Left(F.map(k)(_ flatMap f)) 17          case FlatMap(b,g) => FlatMap(b, g andThen (_ flatMap f)).resume 18  } 19  } 20  def foldMap[G[_]](f: (F ~> G))(implicit F: Functor[F], G: Monad[G]): G[A] = resume match { 21        case Right(a) => G.unit(a) 22        case Left(k) => G.flatMap(f(k))(_ foldMap f) 23  } 24 } 25 case class Return[F[_],A](a: A) extends Free[F,A] 26 case class Suspend[F[_],A](ffa: F[Free[F,A]]) extends Free[F,A] 27 object Free { 28 import scalaz.Unapply 29   /** A free monad over the free functor generated by `S` */
30   type FreeC[S[_], A] = Free[({type f[x] = Coyoneda[S, x]})#f, A] 31 
32   /** Suspends a value within a functor in a single step. Monadic unit for a higher-order monad. */
33   def liftF[S[_], A](value: => S[A])(implicit S: Functor[S]): Free[S, A] =
34  Suspend(S.map(value)(Return[S, A])) 35 
36   /** A version of `liftF` that infers the nested type constructor. */
37   def liftFU[MA](value: => MA)(implicit MA: Unapply[Functor, MA]): Free[MA.M, MA.A] =
38  liftF(MA(value))(MA.TC) 39 
40   /** A free monad over a free functor of `S`. */
41   def liftFC[S[_], A](s: S[A]): FreeC[S, A] =
42  liftFU(Coyoneda(s)) 43     
44   /** Interpret a free monad over a free functor of `S` via natural transformation to monad `M`. */
45   def runFC[S[_], M[_], A](sa: FreeC[S, A])(interp: S ~> M)(implicit M: Monad[M]): M[A] =
46     sa.foldMap[M](new (({type λ[α] = Coyoneda[S, α]})#λ ~> M) { 47       def apply[A](cy: Coyoneda[S, A]): M[A] =
48  M.map(interp(cy.fi))(cy.k) 49  }) 50 }

我们把前面推导出来的Free搬过来。然后在Free companion object里增加了FreeC类型:

type FreeC[S[_],A] = Free[({type f[x] = Coyoneda[F,x]})#f, A]

这个可以说是一个由Coyoneda产生的Free。

现在我们要想办法把S[A]升格成FreeC:liftFC[S[_],A](s: S[A]): FreeC[S,A],这里需要先把S[A]升格成Coyoneda:Coyoneda(s)。

由于Coyoneda[S,A]是个多层嵌入类型。我们在liftFU函数中需要借用scalaz的Unapply类型来分解出Coyoneda, S[A]然后施用在liftF;

def liftF[S[_],A](sa: S[A])(implicit S: Functor[S]),这里的S就是Coyoneda。

Interpreter沿用了foldMap但是调整了转换源目标类型 Functor >>> Coyoneda。其它如Trampoline机制维持不变。

现在我们可以直接用任何F[A]来产生Free了。先试试上面的那个Console。这个Console不是个Functor:

 1 trait Console[A]  2 case object GetLine extends Console[String]  3 case class PutLine(line: String) extends Console[Unit]  4 import Free._  5 implicit def liftConsole[A](ca: Console[A]): FreeC[Console,A] = liftFC(ca)  6                                                   //> liftConsole: [A](ca: ch13.ex11.Console[A])ch13.ex11.Free.FreeC[ch13.ex11.Co  7                                                   //| nsole,A]
 8 for {  9     _ <- PutLine("What is your first name ?") 10     first <- GetLine 11     _ <- PutLine("What is your last name ?") 12     last <- GetLine 13     _ <- PutLine(s"Hello, $first $last !") 14 } yield ()                                        //> res0: ch13.ex11.Free[[x]ch13.ex11.Coyoneda[ch13.ex11.Console,x],Unit] = Sus 15                                                   //| pend(ch13.ex11$Coyoneda$$anon$4@50f8360d)

 可以使用Free的Monadic语言了。下面再试试Interpreter部分:

 

 1 val ioprg = for {  2     _ <- PutLine("What is your first name ?")  3     first <- GetLine  4     _ <- PutLine("What is your last name ?")  5     last <- GetLine  6     _ <- PutLine(s"Hello, $first $last !")  7 } yield ()                                        //> ioprg : ch13.ex11.Free[[x]ch13.ex11.Coyoneda[ch13.ex11.Console,x],Unit] =  8                                                   //| Suspend(ch13.ex11$Coyoneda$$anon$4@13c78c0b)
 9 
10 type Id[A] = A 11 implicit val idMonad = new Monad[Id] { 12     def unit[A](a: A) = a 13     def flatMap[A,B](fa: A)(f: A => B): B = f(fa) 14 }                                                 //> idMonad : ch13.ex11.Monad[ch13.ex11.Id] = ch13.ex11$$anonfun$main$1$$anon$ 15                                                   //| 10@12843fce
16 
17 object RealConsole extends (Console ~> Id) { 18     def apply[A](ca: Console[A]): A = ca match { 19         case GetLine => readLine 20         case PutLine(l) => println(l) 21  } 22 } 23 Free.runFC(ioprg)(RealConsole)                    //> What is your first name ?/

 

也很顺利呢。再试试加了State维护的IO程序:

 

 1 case class State[S,A](runState: S => (A,S)) {  2     def map[B](f: A => B) = State[S,B](s => {  3         val (a1,s1) = runState(s)  4  (f(a1),s1)  5  })  6     def flatMap[B](f: A => State[S,B]) = State[S,B](s => {  7         val (a1,s1) = runState(s)  8  f(a1).runState(s1)  9  }) 10 } 11 case class InOutLog(inLog: List[String], outLog: List[String]) 12 type LogState[A] = State[InOutLog, A] 13 implicit val logStateMonad = new Monad[LogState] { 14     def unit[A](a: A) = State(s => (a, s)) 15     def flatMap[A,B](sa: LogState[A])(f: A => LogState[B]) = sa flatMap f 16 }                                                 //> logStateMonad : ch13.ex11.Monad[ch13.ex11.LogState] = ch13.ex11$$anonfun$m 17                                                   //| ain$1$$anon$11@3dd3bcd
18 object MockConsole extends(Console ~> LogState) { 19     def apply[A](c: Console[A]): LogState[A] = State( 20         s => (c,s) match { 21             case (GetLine, InOutLog(in,out)) => (in.head, InOutLog(in.tail, out)) 22           case (PutLine(l), InOutLog(in,out)) => ((),InOutLog(in, l :: out)) 23  }) 24 } 25 val s = Free.runFC(ioprg)(MockConsole)            //> s : ch13.ex11.LogState[Unit] = State(<function1>)
26 val ls = s.runState(InOutLog(List("Tiger","Chan"),List())) 27                                                   //> ls : (Unit, ch13.ex11.InOutLog) = ((),InOutLog(List(),List(Hello, Tiger Ch 28                                                   //| an !, What is your last name ?, What is your first name ?)))

 

也能正确地维护状态。
现在我们可以把任何F[A]类型变成Free Monad并用它实现Monadic programming及副作用解译运算!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(free)