- 华为OD2023(A卷)基础题21【日志采集系统】
大司码
算法华为od
日志采集系统题目日志采集是运维系统的的核心组件。日志是按行生成,每行记做一条,由采集系统分批上报。如果上报太频繁,会对服务端造成压力;如果上报太晚,会降低用户的体验;如果一次上报的条数太多,会导致超时失败。为此,项目组设计了如下的上报策略:每成功上报一条日志,奖励1分每条日志每延迟上报1秒,扣1分积累日志达到100条,必须立即上报给出日志序列,根据该规则,计算首次上报能获得的最多积分数。输入按时序
- 用户行为路径分析(Google Analytics数据挖掘)
闲人编程
Python数据分析实战精要数据挖掘人工智能用户行为路径分析Analytics数据分析用户习惯
目录用户行为路径分析(GoogleAnalytics数据挖掘)1.引言2.项目背景与意义2.1用户行为路径的重要性2.2GoogleAnalytics数据概述2.3数据规模与挑战3.数据集生成与介绍4.数据预处理与GPU加速5.用户行为路径分析方法5.1用户行为路径构建5.2行为路径挖掘与模式分析5.3常用指标计算6.数据可视化与指标展示7.PyQtGUI设计与实现8.GPU加速与性能优化9.系统
- COBOL语言的信号量
俞嫦曦
包罗万象golang开发语言后端
COBOL语言中的信号量机制引言在现代计算机科学中,信号量作为一种同步机制,广泛应用于多线程和并发编程中。尽管COBOL(CommonBusinessOrientedLanguage)是一种相对较老的编程语言,但它依然被一些企业应用于业务系统中。本文将深入探讨COBOL语言中的信号量机制,包括其基本概念、实现方法,以及在实际应用中的示例。信号量的基本概念信号量是一种用于管理访问共享资源的同步工具。
- SparkSQL编程-RDD、DataFrame、DataSet
早拾碗吧
Sparksparkhadoop大数据sparksql
三者之间的关系在SparkSQL中Spark为我们提供了两个新的抽象,分别是DataFrame和DataSet。他们和RDD有什么区别呢?首先从版本的产生上来看:RDD(Spark1.0)—>Dataframe(Spark1.3)—>Dataset(Spark1.6)如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。在后期的Spark版本中
- 用 C++ 打造综合管理系统:功能实现与代码解析
他是只猫
C++教程c++算法学习开发语言
文章目录系统功能概述设计与实现可逆素数模块计算数字总和模块各位数字之和排序模块字符串中的最大整数模块字符串解压模块输出指定图形模块计算学生信息操作之最高分模块字符串反转模块菜单界面与主函数总结完整代码在C++编程学习过程中,将所学知识应用到实际项目里是提升编程能力的有效途径。今天,我们就来构建一个综合管理系统,这个系统集成了多个实用功能模块,能帮助我们解决不同类别的问题。通过这个项目,我们不仅能巩
- python-leetcode-除自身以外数组的乘积
Joyner2018
pythonleetcode算法职场和发展
238.除自身以外数组的乘积-力扣(LeetCode)classSolution:defproductExceptSelf(self,nums:List[int])->List[int]:n=len(nums)#初始化结果数组answer=[1]*n#计算前缀乘积prefix=1foriinrange(n):answer[i]=prefixprefix*=nums[i]#计算后缀乘积,同时更新结果
- MySQL 重复数据操作
一只小熊猫呀
#MySQLMySQL重复数据操作查询重复数据删除重复数据
1、查询重复数据SELECTa.*FROMtable_aaINNERJOIN(SELECTid_customerFROMtable_aGROUPBYid_customerHAVINGCOUNT(*)>1)bONa.id_customer=b.id_customer;说明:子查询(子选择b)选择所有id_customer并计算每个id_customer的出现次数。通过HAVINGCOUNT(*)>1
- MNIST数据集&手写数字识别
Zoro|
kerastensorflow人工智能机器学习
TensorFlow是一个开源的机器学习框架,由Google开发并发布。它提供了一种基于数据流图的编程模型,用于构建和训练机器学习模型。TensorFlow的核心概念是张量(Tensor)和流图(Graph)。张量是TensorFlow中的基本数据单位,可以理解为多维数组,可以是标量、向量、矩阵或更高维度的数组。流图是由一系列操作(Operation)和张量组成的。操作定义了计算和转换张量的方式。
- Linux运维技术之Linux云计算架构
极客事纪
Linux《Linux一学就会》程序员linux运维服务器
我以下图为基础,说明Linux的架构(architecture)。最内层是硬件,最外层是用户常用的应用,比如说firefox浏览器,evolution查看邮件,一个计算流体模型等等。硬件是物质基础,而应用提供服务。但在两者之间,还要经过一番周折。还记得Linux启动。Linux首先启动内核(kernel),内核是一段计算机程序,这个程序直接管理管理硬件,包括CPU、内存空间、硬盘接口、网络接口等等
- 三分钟让你搞懂云计算中的CDN是什么?
云上的阿七
云计算
随着互联网的快速发展,网站的访问速度和稳定性越来越受到重视。而在众多提升网站性能的技术中,CDN(内容分发网络)无疑是一个非常重要的工具。今天,我们就来聊聊云计算中的CDN是什么,以及它是如何为网站带来显著好处的。CDN是什么?CDN,全称ContentDeliveryNetwork,翻译过来就是“内容分发网络”。它是一种分布式的网络架构,通过将网站的静态资源(如图片、视频、JavaScript文
- 烧钱大户注意!这5类云资源浪费正在吞噬你的预算
云上的阿七
云计算
烧钱大户注意!这5类云资源浪费正在吞噬你的预算企业在上云的过程中,虽然享受到了弹性计算的便利,但如果管理不当,云资源的浪费可能会大幅推高IT成本。很多企业在不知不觉中被云服务的“隐形成本”吞噬,导致预算超支。本文将揭示云计算中最常见的5类资源浪费,并提供优化建议,帮助企业减少不必要的支出。1.过度配置的计算实例问题企业常常为了应对偶尔的高流量,选择配置超大规格的计算实例,如EC2、ECS等,导致大
- 5G时代新基建:边缘节点如何将云计算响应速度提升300%“
云上的阿七
5G云计算
随着5G技术的普及,云计算正在迈向一个全新的阶段。传统云计算模式虽然提供了强大的算力和存储能力,但由于数据中心与用户终端的物理距离,网络时延问题始终是一个挑战。为了解决这一问题,边缘计算应运而生,并成为5G时代新基建的重要组成部分。本文将探讨边缘节点如何结合5G技术,将云计算响应速度提升300%,为企业和用户带来更流畅的数字体验。边缘计算的核心优势边缘计算(EdgeComputing)是一种分布式
- 深入解析BM25:LangChain中的高效检索算法
AI Agent首席体验官
langchain算法
1.BM25算法BM25是信息检索领域中一个重要的排序算法,它用来计算查询与文档之间的相关性。让我们通过一个图书馆的例子来理解:想象你是一个图书馆管理员,有人来问你:“我想找关于太空探索和火星的书”。传统TF-IDF方法:就像你先数一数每本书中"太空探索"和"火星"这些词出现的次数,然后优先推荐这些词出现最多的书。但这有个问题:如果一本1000页的书和一本100页的书都提到"火星"10次,按理说短
- 从经典到现代:BM25在LangChain中的应用与优势
AI Agent首席体验官
langchain
1.BM25算法BM25是信息检索领域中一个重要的排序算法,它用来计算查询与文档之间的相关性。让我们通过一个图书馆的例子来理解:想象你是一个图书馆管理员,有人来问你:“我想找关于太空探索和火星的书”。传统TF-IDF方法:就像你先数一数每本书中"太空探索"和"火星"这些词出现的次数,然后优先推荐这些词出现最多的书。但这有个问题:如果一本1000页的书和一本100页的书都提到"火星"10次,按理说短
- 中电金信25/3/18面前笔试(需求分析岗+数据开发岗)
苍曦
需求分析前端javascript
部分相同题目在第二次数据开发岗中不做解析,本次解析来源于豆包AI,正确与否有待商榷,本文只提供一个速查与知识点的补充。一、需求分析第1题,单选题,Hadoop的核心组件包括HDFS和以下哪个?MapReduceSparkStormFlink解析:Hadoop的核心组件是HDFS(分布式文件系统)和MapReduce(分布式计算框架)。Spark、Storm、Flink虽然也是大数据处理相关技术,但
- 【从零开始学习计算机科学】软件工程(四)结构化需求分析 与 面向对象需求分析
贫苦游商
学习软件工程需求分析ER图DFD数据字典数据流图
【从零开始学习计算机科学】软件工程(四)结构化需求分析与面向对象需求分析结构化需求分析数据模型E-R图基于E-R图的建模过程功能模型分层DFD简介基于DFD的建模原则DFD建模流程DFD的建模中的核心过程分层DFD的改进DFD建模中的注意事项行为模型STD建模的过程数据字典结构化分析总结面向对象需求分析OOAOA的过程时序图状态图面向对象需求建模总结结构化需求分析结构化分析(SA,Structur
- 苏姿丰亮相AMD AI PC创新峰会:AI是50年来最具变革性的技术,AMD赋能下一轮AI创新浪潮
CSDN资讯
人工智能AMD
2025年3月18日,AMD在北京举办“ADVANCINGAI”AMDAIPC创新峰会,展示了其在中国AIPC生态系统中的强劲发展势头,并迎来了性能与智能的新高度。AMD董事会主席及首席执行官LisaSu博士携手AMD高级副总裁、大中华区总裁潘晓明,AMD高级副总裁、计算与图形总经理JackHuynh出席活动。同时,AMD重要合作伙伴包括联想集团执行副总裁兼中国区总裁刘军、华硕电脑全球副总裁石文宏
- 深度学习五大模型:CNN、Transformer、BERT、RNN、GAN详细解析
深度学习
卷积神经网络(ConvolutionalNeuralNetwork,CNN)原理:CNN主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在输入数据上进行卷积运算,提取局部特征;池化层则对特征图进行下采样,降低特征维度,同时保留主要特征;全连接层将特征图展开为一维向量,并进行分类或回归计算。CNN利用卷积操作实现局部连接和权重共享,能够自动学习数据中的空间特征。适用场景:广泛应用于图像处理相关的
- OpenLSD是一个自适应开源数据集,旨在支持逻辑综合中的多种机器学习任务。
数据集
2024-11-14,由中国科学院计算技术研究所、鹏城实验室和北京大学等联合创建OpenLSD数据集,目的为逻辑综合过程中的机器学习任务提供一个自适应的数据集生成框架。该数据集的核心研究问题是如何在逻辑综合的三个基本步骤——布尔表示、逻辑优化和技术映射中,通过机器学习方法提升效率和质量。一、研究背景:逻辑综合是电子设计自动化(EDA)流程中的关键环节,它负责将高级设计规范转化为门级网络列表。近年来
- 算力技术创新驱动多场景应用演进
智能计算研究中心
其他
内容概要算力技术创新正成为数字经济时代的基础性驱动力,从异构计算架构的多元融合到量子计算的颠覆性突破,技术演进不断突破物理与算法的双重边界。在工业互联网场景中,边缘计算通过分布式节点实现毫秒级响应,支撑智能制造产线的实时控制;智能安防系统依托深度学习模型与流计算技术,完成海量视频数据的动态解析;而科学计算领域通过分布式计算与模型压缩技术,将基因测序、气候模拟等复杂任务的效率提升至新量级。值得注意的
- DeepSeek高能低耗AI创作突破
智能计算研究中心
其他
内容概要随着人工智能技术向垂直领域加速渗透,生成式模型的应用边界正经历革命性拓展。DeepSeek系列产品通过670亿参数混合专家架构,构建起覆盖学术研究、内容创作与编程开发的多模态解决方案。该架构融合视觉语言理解与多语言处理能力,在保持高响应速度的同时,显著降低算力消耗,其单位计算成本仅为同类产品的三分之一。值得关注的是,系统搭载的DeepSeekProver学术引擎可自动生成文献综述框架,而D
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- 算力未来演进与多场景创新
智能计算研究中心
其他
内容概要算力作为数字经济的核心生产力,其技术架构与应用场景正经历多维突破。从技术架构层面来看,异构计算通过整合CPU、GPU、FPGA等多元芯片实现性能跃升,边缘计算则借助分布式节点降低时延并提升响应效率,而量子计算在特定领域的指数级加速潜力已进入验证阶段。在应用场景维度,工业互联网通过实时数据分析优化产线效率,智能安防依托视频流结构化处理增强预警能力,元宇宙则依赖高密度渲染与低延迟传输构建沉浸式
- 【计算机网络考研-408】——应用层——课程思维逻辑翻转课堂
海宁不掉头发
人工智能软件工程408计算机网络计算机网络笔记软件工程人工智能
标题:《应用层:互联网的"外卖小哥"与"快递系统"》配图:快递员骑电动车送货+外卖APP界面副标题:“从抢优惠券到收情书,全靠这一层!”因为比如现在我们在电商APP上边或者各大型购物网站上边抢购限时优惠券,需要快速获取数据并且提交订单的话。需要使用的应用层的协议:有HTTP/HTTPS这两个协议主要用于传输网页内容和用户请求的过程。需优惠券信息通过HTTP协议从服务器传输到用户设备。用户点击“领取
- 未来5年AI人工智能与信息技术领域发展趋势
海宁不掉头发
人工智能软件工程人工智能人工智能软件工程笔记chatgpt
未来五年人工智能与信息技术领域发展趋势深度解析一、人工智能与神经网络技术的突破路径(一)算法架构的范式革新深度神经网络正经历从量变到质变的演进。以Transformer为核心的序列建模技术持续迭代,字节跳动云雀模型通过动态结构优化,在保持语言理解能力的同时将参数量压缩至GPT-4的1/10,推理速度提升3倍。更值得关注的是类脑计算的突破,中国科学院自动化研究所提出"基于内生复杂性"的类脑神经元模型
- 融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
在深度学习的背景下,NVIDIA的CUDA与AMD的ROCm框架缺乏有效的互操作性,导致基础设施资源利用率显著降低。随着模型规模不断扩大而预算约束日益严格,2-3年更换一次GPU的传统方式已不具可持续性。但是Pytorch的最近几次的更新可以有效利用异构计算集群,实现对所有可用GPU资源的充分调度,不受制于供应商限制。本文将深入探讨如何混合AMD/NVIDIAGPU集群以支持PyTorch分布式训
- Springboot乐动健身房管理系统6xl64计算机毕业设计-课程设计-期末作业-毕设程序代做
含宇网络
springbootjava后端
Springboot乐动健身房管理系统6xl64计算机毕业设计-课程设计-期末作业-毕设程序代做【免费赠送源码】Springboot乐动健身房管理系统6xl64计算机毕业设计-课程设计-期末作业-毕设程序代做本源码技术栈:项目架构:B/S架构开发语言:Java语言开发软件:ideaeclipse前端技术:Layui、HTML、CSS、JS、JQuery等技术后端技术:JAVA运行环境:Win10、
- 数据结构:数组和链表
OutlierLi
数据结构代码随想录数据结构链表
数据结构:数组和链表数组数组基础数组是一种数据结构,它在计算机内存中占据一段连续的空间,并由一系列元素组成,这些元素的类型相同。在数组中,每个元素都可以通过数组索引(通常是整数)快速访问,索引通常从0开始。数组的特点是其大小(即可以容纳的元素数量)在被创建时就已经确定,并且在整个使用周期内保持固定。vector向量array数组和vector数组的区别:固定大小vs动态大小:std::array是
- 新手如何成为一名顶尖黑客?只需这十二个步骤轻松入门!
网络安全淼叔
黑客渗透测试白帽黑客网络安全副业
成为一名黑客的过程涉及不断学习和实践技术,既要掌握基础的计算机知识,也要具备足够的安全意识和道德责任感。以下是成为一名黑客的12个基本步骤,为小白提供系统的入门指导。对于从来没有接触过黑客的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。1.了解计算机基础要成为一名黑客,首先需要了解计算机硬件、操作系统和网络的基础。你需要理解计算机如何处
- oracle常用函数
小辉煌
oracle
1、replace()含义:替换字符串,用法:replace(原字段,“原字段旧内容“,“原字段新内容“)2、greatest(expr_1,expr_2,...expr_n)含义:从表达式(列、常量、计算值)expr_1,expr_2,...expr_n等中找出最大的数返回用法:SELECTGREATEST(2,5,12,3,16,8,9)AFROMDUAL;--结果为163、nvl()含义:如
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那