HBase八大应用场景

HBase概述

HBase是一个分布式存储、数据库引擎,可以支持千万的QPS、PB级别的存储,这些都已经在生产环境验证,并且在广大的公司已经验证。特别是阿里、小米、京东、滴滴内部都有数千、上万台的HBase集群。选择一个技术的首要条件是对齐大公司,大公司会投入大量的人力去维护、改进、贡献社区。


关于NewSQL与NoSQL的关系

技术总是不断向前发展的,如今都在提NewSQL,其实NewSQL在笔者看来是NoSQL之上的一个封装,一个子场景。NoSQL中的大表,典型就是提供了KV1V2……Vn,其中每个V可以是1b,也可以是100MB。可以说是一个元的存在,就类似于数字世界的01,可以任意组合。在以HBase为代表的NoSQL中,HBase可以组合出任意的场景,NewSQL可以是之上加了SQL层或者更近一层添加事务的子场景。


关于计算与存储分离

在云上,对于引擎最为核心的就是存储计算分离,存储可以按需计费,起码得弹性伸缩。计算则按节点存储提供。如果完全按照QPS计费,要么费用高得吓人,要么难以满足更多的场景,比如存储10M,到底算一次QPS,还是多少次。 由于HBase天生就是存储计算分离,天然比较适配云上的架构,可以说到了云上,HBase更加具有优势。


HBase场景

HBase可以说是一个数据库,也可以说是一个存储。拥有双重属性的HBase天生就具备广阔的应用场景。在最近的一些版本中,引入了OffHeap降低gc影响,优化链路延迟,提供Replica等可以满足在线的需求。引入MOB,可以存储10M左右的对象,完全适应了对象存储。另外由于自身的并发能力、存储能力,可以说是具有最为竞争力的引擎



  • 对象存储:我们知道不少的头条类、新闻类的的新闻、网页、图片存储在HBase之中,一些病毒公司的病毒库也是存储在HBase之中

  • 时序数据:HBase之上有OpenTSDB模块,可以满足时序类场景的需求

  • 推荐画像:特别是用户的画像,是一个比较大的稀疏矩阵,蚂蚁的风控就是构建在HBase之上

  • 时空数据:主要是轨迹、气象网格之类,滴滴打车的轨迹数据主要存在HBase之中,另外在技术所有大一点的数据量的车联网企业,数据都是存在HBase之中

  • CubeDB OLAP:Kylin一个cube分析工具,底层的数据就是存储在HBase之中,不少客户自己基于离线计算构建cube存储在hbase之中,满足在线报表查询的需求

  • 消息/订单:在电信领域、银行领域,不少的订单查询底层的存储,另外不少通信、消息同步的应用构建在HBase之上

  • Feeds流:典型的应用就是xx朋友圈类似的应用

  • NewSQL:之上有Phoenix的插件,可以满足二级索引、SQL的需求,对接传统数据需要SQL非事务的需求

 更多的场景需要不断挖掘。

猜你喜欢




#大数据和云计算机技术社区#博客精选(2017)

NoSQL 还是 SQL ?这一篇讲清楚

阿里的OceanBase解密

#大数据和云计算技术#: "四有"社区介绍

大数据和云计算技术周报(第44期):NoSQL特辑

大数据和云计算技术周报(第43期)

新数仓系列:Hbase周边生态梳理(1)

《大数据架构详解》第2次修订说明

简单梳理跨数据中心数据库

云观察系列:漫谈运营商公有云发展史

云观察系列:百度云的一波三折

云观察系列:阿里云战略观察

超融合方案分析系列(7)思科超融合方案分析


来源:https://mp.weixin.qq.com/s?__biz=MzA3ODUxMzQxMA==&mid=2663995282&idx=1&sn=aeb5b7011b96ee7eb4f79c8e95d37a06&chksm=847c63ffb30beae985e4d2c4f0bf6061f21a157dad02f1544a6a0bec3e1bf43564decb7bb2c8&mpshare=1&scene=23&srcid=0508lrYcRE61z8LD1ij04F07#rd

你可能感兴趣的:(大数据~HBase)