欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~
本文由week 发表于云+社区专栏
一、数据源
1、相似人群数据存在TDW库中,数据字典说明:
CREATE TABLE sim_people_tdw_tbl(
uid STRING COMMENT 'reader id',
sim_uids STRING COMMENT 'sim_uids',
sim_num BIGINT COMMENT 'sim_num',
update_date STRING COMMENT 'update_date'
)
字段 | 类型 | 含义 |
---|---|---|
uid | string | 用户标识 |
sim_uids | string | 与uid喜好相似的人群,格式为用户编号:相同阅读量,相似用户之间以逗号分隔 |
sim_num | BIGINT | 相似人群的人数 |
update_date | string | 数据日期 |
2、基础用户画像存在MongoDB中
字段 | 含义 |
---|---|
_id | 用户id |
profile(离线)positive(实时) | 用户正画像(喜欢),每个维度以分号间隔,每个子维度以逗号间隔,值格式为key_id:weight,维度含义依次为一级分类、二级分类、关键字、topic、阅读来源 |
negative | 负画像(不喜欢),其他字段的含义与正画像一样 |
update_time | 更新时间 |
cityCode或city | 城市编码 |
3、相似人群画像也存在MongoDB中
二、整体思路
由于TESLA集群无法直接操作MongoDB,需要将TDW里面的用户画像数据,通过洛子系统导出至HDFS,再与MongoDB中原有群画像进行合并。
三、算法流程
四、核心代码
#! /usr/bin/python2.7
# -*- coding: utf8 -*-
import decimal
import time
import math
import sys
import os
import param_map
from pymongo.collection import Collection
from decimal import Decimal
import datetime
reload(sys)
sys.setdefaultencoding("utf-8")
sys.path.append("../")
from utils import mongoUtils, confUtils
decimal.getcontext().prec = 6
BATCH_NUM = 100000
now_time = datetime.datetime.now()
delta = datetime.timedelta(days=30)
delta30 = now_time - delta
time_limit = int(time.mktime(delta30.timetuple()))
print(time_limit)
def split_uid_similarity(uid_num_str):
""" 拆分uid和相似度,并分别返回 :param uid_num_str: :return:uid,相似度 """
uid_num = uid_num_str.split(":")
return uid_num[0], float(uid_num[1])
def split_uid_sim_user(user_hd):
""" 拆分uid和相似人群,并分别返回 :param user_hd: :return: uid,相似人群 """
uid_sim_user = user_hd.strip().split("\t")
return uid_sim_user[0], uid_sim_user[1]
def dimension_profile_limit(dimension_profile, min_i, max_i, limit, cluster_profile_str):
""" :param dimension_profile: :param min_i: :param max_i: :param limit: :param cluster_profile_str: :return: 返回前limit个特征标签,并对特征权重进行映射 """
if len(dimension_profile) != 0:
# 先排序
dimension_profile = sorted(dimension_profile.iteritems(), key=lambda c: c[1], reverse=True)
# 再对前limit条记录进行映射
size = limit if len(dimension_profile) > limit else len(dimension_profile)
for i in range(size):
tag = dimension_profile[i]
tag_id = tag[0]
tag_value = tag[1]
tag_value = max_i if tag_value > max_i else tag_value
if tag_value >= min_i:
cluster_profile_str = cluster_profile_str + str(tag_id) + ":" + str(tag_value) + ","
if len(dimension_profile) != 0:
# 假如长度不为0,将最后一个逗号删掉
cluster_profile_str = cluster_profile_str[:-1]
return cluster_profile_str
def cluster_profile_dic2list(cluster_profile, dimension_param_dic):
""" 相似用户群画像阈值过滤,dic->list :param dimension_param_dic: 维度阈值 :return: 相似用户群特征list :param cluster_profile:群体画像 """
cluster_profile_str = ""
if len(cluster_profile) == 0:
return None
for key, dimension_profile in cluster_profile.items():
# 取出维度的阈值
dimention_param = dimension_param_dic.get(str(key))
if dimention_param is not None:
min_i = dimention_param.get("min")
max_i = dimention_param.get("max")
limit = dimention_param.get("limit")
if dimension_profile is not None:
cluster_profile_str = dimension_profile_limit(dimension_profile, min_i, max_i, limit,
cluster_profile_str)
# values为不为None 都需要追加一个分号
cluster_profile_str = cluster_profile_str + ";"
cluster_profile_list = cluster_profile_str[:-1].split(";")
return cluster_profile_list
def sim_users_dic2list(cluster_dic, sim_users_max_size):
""" # 相似人群数量限制,dic->list :param sim_users_max_size: 相似人群的最大值 :type cluster_dic: 字典表 :param cluster_dic:相似人群字典表 :return: 相似度最高的相似人群 """
user_similarity_list = sorted(cluster_dic.iteritems(), key=lambda b: b[1], reverse=True)
sim_users_s = ""
i = 0
new_cluster_dic = {}
for i in range(len(user_similarity_list)):
if i < sim_users_max_size:
user_similarity = user_similarity_list[i]
key = user_similarity[0]
value = user_similarity[1]
new_cluster_dic[key] = value
sim_users_s = sim_users_s + key + ":" + str(value) + ","
else:
break
i = i + 1
sim_users_list = sim_users_s[:-1].split(",")
return sim_users_list, new_cluster_dic
class ClusterProfileComputer(object):
cf = confUtils.getConfig("../conf/setting.conf")
def __init__(self, environment):
self.xw_database, self.xw_client = mongoUtils.getMongodb("XW")
self.pac_database, self.pac_client = mongoUtils.getMongodb("PAC")
self.om_database, self.pac_client = mongoUtils.getMongodb("OM")
item = "LOCAL_SIM_USERS_PATH" if environment == "local" else "SIM_USERS_PATH"
self.sim_users_path = confUtils.getFilePath(self.cf, "SIM_USERS", item)
self.decay_factor = param_map.SIM_USERS_PARAM.get("decay_factor")
self.sim_users_max_size = param_map.SIM_USERS_PARAM.get("sim_users_max_size")
self.similarity_low = param_map.SIM_USERS_PARAM.get("similarity_low")
self.similarity_high = param_map.SIM_USERS_PARAM.get("similarity_high")
@staticmethod
def basic_cursor2dic(platform, mongodb_cursor):
""" mongodb取出的基础画像存到字典表 :param platform: 平台 :param mongodb_cursor: :return: """
users_profile_map = {}
for user_profile in mongodb_cursor:
_uid = user_profile["name"] if platform == "PAC" else user_profile["_id"]
users_profile_map[_uid] = user_profile
return users_profile_map
@staticmethod
def get_sim_users_profile(all_users_profile, users_similarity):
""" :param all_users_profile: :param users_similarity: :return:相似人群的画像 """
rs = []
for uid_similarity in users_similarity:
uid, similarity = split_uid_similarity(uid_similarity)
profile = all_users_profile.get(uid)
if profile is not None:
rs.append(profile)
return rs
def dump_basic_profile(self, all_uid, batch_num, platform, profile_collection):
# type: (list, int) -> dict
""" :return: 平台基础画像 :param platform: 平台 :return: 基础画像字典表 :param profile_collection: 数据库集合 :param all_uid:用户的编号列表 :type batch_num: int """
rs = {}
# 数据库查询所有人群用户画像,此画像中没有相似人群
for x in xrange(0, int(math.ceil(len(all_uid) / float(batch_num)))):
key = "name" if platform == "PAC" else "_id"
cursor = profile_collection.find({"$and": [{key: {'$in': all_uid[x * batch_num:(x + 1) * batch_num]}},
{"update_time": {"$gt": time_limit}}]}, no_cursor_timeout=True)
rs.update(self.basic_cursor2dic(platform, cursor))
cursor.close()
return rs
def compute_single_file(self, path, xw_profile_collection, pac_profile_collection, om_profile_collection):
users = open(path)
all_uid_list = []
uid_sim_map = {}
# uid_sim_map["1_291083852"] = ["1_757155427:8"]
for user_str in users:
# 从hdfs中取出udi的相似人群
uid_hf, sim_users_hd = split_uid_sim_user(user_str)
uid_sim_map[uid_hf] = sim_users_hd.split(",")
all_uid_list.append(uid_hf)
print("uid_sim_map : %d" % len(uid_sim_map))
# 数据库查询所有用户的基础画像,此画像中没有相似人群
platform_basic_profile_dic = {}
xw_users_basic_profile_map = self.dump_basic_profile(all_uid_list, BATCH_NUM, "XW", xw_profile_collection)
platform_basic_profile_dic["XW"] = xw_users_basic_profile_map
pac_users_basic_profile_map = self.dump_basic_profile(all_uid_list, BATCH_NUM, "PAC", pac_profile_collection)
platform_basic_profile_dic["PAC"] = pac_users_basic_profile_map
om_users_basic_profile_map = self.dump_basic_profile(all_uid_list, BATCH_NUM, "OM", om_profile_collection)
platform_basic_profile_dic["OM"] = om_users_basic_profile_map
# print("dump basic profile %d records" % len(pac_all_users_profile_map))
# 数据库查询相似人群画像
cluster_profile_collection = self.xw_database.get_collection(
param_map.MONGODB_CLUSTER_PROFILE_MAP["Cluster"]) # type: Collection
old_cluster_profile_map = dump_cluster_profile_history(self, all_uid_list, cluster_profile_collection,
BATCH_NUM)
print("dump cluster profile %d records" % len(old_cluster_profile_map))
#index = 0
for uid, sim_users_list in uid_sim_map.items():
print ("uid = %s" % uid)
# 合并新老相似人群,并使用衰减因子来计算相似度
users_similarity_dic = merge_sim_users(uid, sim_users_list, self.decay_factor, self.similarity_low,
self.similarity_high, old_cluster_profile_map)
# 相似人群---->将字典表转化为list,存储mongodb
sim_users_list, users_similarity_dic = sim_users_dic2list(users_similarity_dic, self.sim_users_max_size)
print("similar people len: %d" % len(sim_users_list))
platform_cluster_profile_list = []
for platform_name, platform_basic_profile in platform_basic_profile_dic.items():
# 取出用户i相似人群的画像
sim_users_profile_list = self.get_sim_users_profile(platform_basic_profile, sim_users_list)
cluster_profile_dic = cluster_profile_compute(platform_name, sim_users_profile_list,
users_similarity_dic)
# 结果区间映射,相似人群画像特征----->字典表转list,便于存储mongodb
cluster_profile_list = cluster_profile_dic2list(cluster_profile_dic, param_map.DIMENSION_PARAM)
platform_cluster_profile_list.append(cluster_profile_list)
xw_cluster_profile = platform_cluster_profile_list[0]
pac_cluster_profile = platform_cluster_profile_list[1]
om_cluster_profile = platform_cluster_profile_list[2]
old_profile = cluster_profile_collection.find_one({"_id": uid})
if old_profile is None:
create_time = int(time.time())
else:
create_time = old_profile["create_time"]
document = ({"_id": uid, "sim_users": sim_users_list, "xw_cluster_profile": xw_cluster_profile,
"pac_cluster_profile": pac_cluster_profile, "om_cluster_profile": om_cluster_profile,
"create_time": create_time,
"update_time": int(time.time())})
cluster_profile_collection.save(document)
#if index >= 100:
# break
#index = index + 1
print("end")
users.close()
def run(self):
# 相似人群HDFS
xw_profile_collection = self.xw_database.get_collection(param_map.MONGODB_PROFILE_MAP["XW"])
pac_profile_collection = self.pac_database.get_collection(param_map.MONGODB_PROFILE_MAP["PAC"])
om_profile_collection = self.om_database.get_collection(param_map.MONGODB_PROFILE_MAP["OM"])
for dir_path, dir_names, file_names in os.walk(self.sim_users_path):
print(dir_names)
for file_name in file_names:
if "attempt_" in file_name:
print(file_name)
path = os.path.join(dir_path, file_name)
self.compute_single_file(path, xw_profile_collection, pac_profile_collection, om_profile_collection)
def accumulate_dimension_profile(cluster_dimension_feature, user_dimension, ratio):
""" 将user指定维度的特征累加到群画像 :param cluster_dimension_feature:群画像某个维度的特征 :param user_dimension:用户某个维度的特征 :param ratio:user的权重,公式为相似度/(相似度+10),区间为(1/3,10/11) :return:指定维度的群画像 """
if user_dimension != "":
user_feature_list = user_dimension.split(",")
for feature in user_feature_list:
atom = feature.split(":")
if len(atom) == 2:
k = atom[0]
w = atom[1]
if cluster_dimension_feature.get(k) is None:
cluster_dimension_feature[k] = Decimal(w) * ratio
else:
cluster_dimension_feature[k] = Decimal(w) * ratio + Decimal(cluster_dimension_feature[k])
return cluster_dimension_feature
def dump_cluster_profile_history(self, all_uid, collection, batch_num):
rs = {}
for x in xrange(0, int(math.ceil(len(all_uid) / float(batch_num)))):
cursor = collection.find({'_id': {'$in': all_uid[x * batch_num:(x + 1) * batch_num]}},
no_cursor_timeout=True)
rs.update(cluster_cursor2dic(cursor))
cursor.close()
return rs
def cluster_cursor2dic(mongodb_cursor):
""" mongodb取出的人群画像存到字典表 :param mongodb_cursor: :return: """
users_profile_map = {}
for user_profile in mongodb_cursor:
_uid = user_profile["_id"]
users_profile_map[_uid] = user_profile
return users_profile_map
def merge_sim_users(uid_hdf, sim_users_new, decay_factor, similarity_low, similarity_high, old_cluster_profile_dic):
""" 合并相似人群 :param similarity_low: 相似度最低值 :param similarity_high: 相似度最高值 :param uid_hdf: 用户编号 :param sim_users_new: 最新的相似用户 :param decay_factor: 衰减因子 :param old_cluster_profile_dic:老群体画像 :return:最新的相似人群 """
cluster_union_dic = {}
# 提取uid和相似度到字典表
for user_similarity in sim_users_new:
_uid, similarity = split_uid_similarity(user_similarity)
cluster_union_dic[_uid] = similarity
# 从mongodb中读取老画像
old = old_cluster_profile_dic.get(uid_hdf)
if old is not None:
sim_users_old = old['sim_users']
for uid_similarity_old in sim_users_old:
uid_similarity_old_list = uid_similarity_old.split(":")
if len(uid_similarity_old_list) == 2:
sim_uid_old = uid_similarity_old_list[0]
try:
weight_old = float(uid_similarity_old_list[1]) * float(decay_factor)
except IndexError:
pass
else:
if (cluster_union_dic.get(sim_uid_old) is None) and (weight_old >= similarity_low):
cluster_union_dic[sim_uid_old] = weight_old
else:
weight_new = weight_old + cluster_union_dic[sim_uid_old]
if weight_new > similarity_high:
weight_new = similarity_high
if weight_new < similarity_low:
del cluster_union_dic[sim_uid_old]
else:
cluster_union_dic[sim_uid_old] = weight_new
return cluster_union_dic
def cluster_profile_compute(platform, sim_users_profile_array, sim_users_dic):
# type: (String, list, dic) -> dic
""" 相似人群特征计算 :param platform:平台 :param sim_users_profile_array: 从mongodb中查出来的相似人群的画像 :param sim_users_dic: 相似人群的相似度字典表 :return: 相似人群画像字典表 """
cluster_profile_rs = {}
for sim_user_obj in sim_users_profile_array:
key = "name" if platform == "PAC" else "_id"
sim_user_id = sim_user_obj.get(key)
# 获取两两用户的相似度
similarity = sim_users_dic.get(sim_user_id)
if similarity is not None:
sim_num = Decimal(similarity)
# 用户对应的权重
rate = Decimal(sim_num / (10 + sim_num))
# 取出某一个人的画像
profile = sim_user_obj.get("profile") if sim_user_obj.get("profile") is not None else ""
dimension_list = profile.split(";")
i = 0
for u_dimension in dimension_list:
# 获取群体维度i的特征
dimension_feature = cluster_profile_rs.get(i)
if dimension_feature is None:
dimension_feature = {}
# 更新维度i的特征
cluster_profile_rs[i] = accumulate_dimension_profile(dimension_feature, u_dimension, rate)
i = i + 1
return cluster_profile_rs
if __name__ == "__main__":
if len(sys.argv) == 2:
env = sys.argv[1]
else:
env = "local"
computer = ClusterProfileComputer(env)
computer.run()
问答
linux实时调度算法?
相关阅读
5 种 Docker 日志最佳实践
你的nginx访问过慢?增加个模块吧!
MySQL 8.0 版本功能变更介绍
此文已由作者授权腾讯云+社区发布,原文链接:https://cloud.tencent.com/developer/article/1159230?fromSource=waitui
欢迎大家前往腾讯云+社区或关注云加社区微信公众号(QcloudCommunity),第一时间获取更多海量技术实践干货哦~
海量技术实践经验,尽在云加社区!